| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Iskra iHUB and iHUB Lite smart metering gateway exposes its web management interface without requiring authentication, allowing unauthenticated users to access and modify critical device settings. |
| Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
| Issue summary: A bug has been identified in the processing of key and
initialisation vector (IV) lengths. This can lead to potential truncation
or overruns during the initialisation of some symmetric ciphers.
Impact summary: A truncation in the IV can result in non-uniqueness,
which could result in loss of confidentiality for some cipher modes.
When calling EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() or
EVP_CipherInit_ex2() the provided OSSL_PARAM array is processed after
the key and IV have been established. Any alterations to the key length,
via the "keylen" parameter or the IV length, via the "ivlen" parameter,
within the OSSL_PARAM array will not take effect as intended, potentially
causing truncation or overreading of these values. The following ciphers
and cipher modes are impacted: RC2, RC4, RC5, CCM, GCM and OCB.
For the CCM, GCM and OCB cipher modes, truncation of the IV can result in
loss of confidentiality. For example, when following NIST's SP 800-38D
section 8.2.1 guidance for constructing a deterministic IV for AES in
GCM mode, truncation of the counter portion could lead to IV reuse.
Both truncations and overruns of the key and overruns of the IV will
produce incorrect results and could, in some cases, trigger a memory
exception. However, these issues are not currently assessed as security
critical.
Changing the key and/or IV lengths is not considered to be a common operation
and the vulnerable API was recently introduced. Furthermore it is likely that
application developers will have spotted this problem during testing since
decryption would fail unless both peers in the communication were similarly
vulnerable. For these reasons we expect the probability of an application being
vulnerable to this to be quite low. However if an application is vulnerable then
this issue is considered very serious. For these reasons we have assessed this
issue as Moderate severity overall.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this because
the issue lies outside of the FIPS provider boundary.
OpenSSL 3.1 and 3.0 are vulnerable to this issue. |
| When saving HSTS data to an excessively long file name, curl could end up
removing all contents, making subsequent requests using that file unaware of
the HSTS status they should otherwise use. |
| When curl retrieves an HTTP response, it stores the incoming headers so that
they can be accessed later via the libcurl headers API.
However, curl did not have a limit in how many or how large headers it would
accept in a response, allowing a malicious server to stream an endless series
of headers and eventually cause curl to run out of heap memory. |
| Kiteworks MFT orchestrates end-to-end file transfer workflows. Prior to version 9.1.0, a bug in Kiteworks MFT could cause under certain circumstances that a user's active session would not properly time out due to inactivity. This issue has been patched in version 9.1.0. |
| Debug information disclosure in the SQL error message to in Revive Adserver 5.5.2 and 6.0.1 and earlier versions causes non-admin users to acquire information about the software, PHP and database versions currently in use. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hibmcge: fix the division by zero issue
When the network port is down, the queue is released, and ring->len is 0.
In debugfs, hbg_get_queue_used_num() will be called,
which may lead to a division by zero issue.
This patch adds a check, if ring->len is 0,
hbg_get_queue_used_num() directly returns 0. |
| Plaintext password storage in Kotaemon 0.11.0 in the client's localStorage. |
| Cross site scripting (XSS) vulnerability in Kotaemon 0.11.0 allowing attackers to execute arbitrary code via a crafted PDF. |
| Glob matches files using patterns the shell uses. Starting in version 10.2.0 and prior to versions 10.5.0 and 11.1.0, the glob CLI contains a command injection vulnerability in its -c/--cmd option that allows arbitrary command execution when processing files with malicious names. When glob -c <command> <patterns> are used, matched filenames are passed to a shell with shell: true, enabling shell metacharacters in filenames to trigger command injection and achieve arbitrary code execution under the user or CI account privileges. This issue has been patched in versions 10.5.0 and 11.1.0. |
| js-yaml is a JavaScript YAML parser and dumper. In js-yaml 4.1.0 and below, it's possible for an attacker to modify the prototype of the result of a parsed yaml document via prototype pollution (`__proto__`). All users who parse untrusted yaml documents may be impacted. The problem is patched in js-yaml 4.1.1. Users can protect against this kind of attack on the server by using `node --disable-proto=delete` or `deno` (in Deno, pollution protection is on by default). |
| In the Linux kernel, the following vulnerability has been resolved:
net: macb: fix unregister_netdev call order in macb_remove()
When removing a macb device, the driver calls phy_exit() before
unregister_netdev(). This leads to a WARN from kernfs:
------------[ cut here ]------------
kernfs: can not remove 'attached_dev', no directory
WARNING: CPU: 1 PID: 27146 at fs/kernfs/dir.c:1683
Call trace:
kernfs_remove_by_name_ns+0xd8/0xf0
sysfs_remove_link+0x24/0x58
phy_detach+0x5c/0x168
phy_disconnect+0x4c/0x70
phylink_disconnect_phy+0x6c/0xc0 [phylink]
macb_close+0x6c/0x170 [macb]
...
macb_remove+0x60/0x168 [macb]
platform_remove+0x5c/0x80
...
The warning happens because the PHY is being exited while the netdev
is still registered. The correct order is to unregister the netdev
before shutting down the PHY and cleaning up the MDIO bus.
Fix this by moving unregister_netdev() ahead of phy_exit() in
macb_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: microchip: vcap api: Fix possible memory leak for vcap_dup_rule()
Inject fault When select CONFIG_VCAP_KUNIT_TEST, the below memory leak
occurs. If kzalloc() for duprule succeeds, but the following
kmemdup() fails, the duprule, ckf and caf memory will be leaked. So kfree
them in the error path.
unreferenced object 0xffff122744c50600 (size 192):
comm "kunit_try_catch", pid 346, jiffies 4294896122 (age 911.812s)
hex dump (first 32 bytes):
10 27 00 00 04 00 00 00 1e 00 00 00 2c 01 00 00 .'..........,...
00 00 00 00 00 00 00 00 18 06 c5 44 27 12 ff ff ...........D'...
backtrace:
[<00000000394b0db8>] __kmem_cache_alloc_node+0x274/0x2f8
[<0000000001bedc67>] kmalloc_trace+0x38/0x88
[<00000000b0612f98>] vcap_dup_rule+0x50/0x460
[<000000005d2d3aca>] vcap_add_rule+0x8cc/0x1038
[<00000000eef9d0f8>] test_vcap_xn_rule_creator.constprop.0.isra.0+0x238/0x494
[<00000000cbda607b>] vcap_api_rule_remove_in_front_test+0x1ac/0x698
[<00000000c8766299>] kunit_try_run_case+0xe0/0x20c
[<00000000c4fe9186>] kunit_generic_run_threadfn_adapter+0x50/0x94
[<00000000f6864acf>] kthread+0x2e8/0x374
[<0000000022e639b3>] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwl4965: Add missing check for create_singlethread_workqueue()
Add the check for the return value of the create_singlethread_workqueue()
in order to avoid NULL pointer dereference. |
| Lookyloo is a web interface that allows users to capture a website page and then display a tree of domains that call each other. Prior to 1.35.3, a XSS vulnerability can be triggered when a user submits a list of URLs to capture, one of them contains a HTML element, and the capture fails. Then, the error field is populated with an error message that contains the bad URL they tried to capture, triggering the XSS. This vulnerability is fixed in 1.35.3. |
| In the Linux kernel, the following vulnerability has been resolved:
media: hi846: Fix memleak in hi846_init_controls()
hi846_init_controls doesn't clean the allocated ctrl_hdlr
in case there is a failure, which causes memleak. Add
v4l2_ctrl_handler_free to free the resource properly. |
| Arcade MCP allows you to to create, deploy, and share MCP Servers. Prior to 1.5.4, the arcade-mcp HTTP server uses a hardcoded default worker secret ("dev") that is never validated or overridden during normal server startup. As a result, any unauthenticated attacker who knows this default key can forge valid JWTs and fully bypass the FastAPI authentication layer. This grants remote access to all worker endpoints—including tool enumeration and tool invocation—without credentials. This vulnerability is fixed in 1.5.4. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix leak of 'r10bio->remaining' for recovery
raid10_sync_request() will add 'r10bio->remaining' for both rdev and
replacement rdev. However, if the read io fails, recovery_request_write()
returns without issuing the write io, in this case, end_sync_request()
is only called once and 'remaining' is leaked, cause an io hang.
Fix the problem by decreasing 'remaining' according to if 'bio' and
'repl_bio' is valid. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: fix memory leak of se_io context in nfc_genl_se_io
The callback context for sending/receiving APDUs to/from the selected
secure element is allocated inside nfc_genl_se_io and supposed to be
eventually freed in se_io_cb callback function. However, there are several
error paths where the bwi_timer is not charged to call se_io_cb later, and
the cb_context is leaked.
The patch proposes to free the cb_context explicitly on those error paths.
At the moment we can't simply check 'dev->ops->se_io()' return value as it
may be negative in both cases: when the timer was charged and was not. |