Filtered by vendor Xen Subscriptions
Total 471 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2021-28697 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 7.8 High
grant table v2 status pages may remain accessible after de-allocation Guest get permitted access to certain Xen-owned pages of memory. The majority of such pages remain allocated / associated with a guest for its entire lifetime. Grant table v2 status pages, however, get de-allocated when a guest switched (back) from v2 to v1. The freeing of such pages requires that the hypervisor know where in the guest these pages were mapped. The hypervisor tracks only one use within guest space, but racing requests from the guest to insert mappings of these pages may result in any of them to become mapped in multiple locations. Upon switching back from v2 to v1, the guest would then retain access to a page that was freed and perhaps re-used for other purposes.
CVE-2021-28696 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.8 Medium
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVE-2021-28695 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.8 Medium
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVE-2021-28694 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.8 Medium
IOMMU page mapping issues on x86 T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Both AMD and Intel allow ACPI tables to specify regions of memory which should be left untranslated, which typically means these addresses should pass the translation phase unaltered. While these are typically device specific ACPI properties, they can also be specified to apply to a range of devices, or even all devices. On all systems with such regions Xen failed to prevent guests from undoing/replacing such mappings (CVE-2021-28694). On AMD systems, where a discontinuous range is specified by firmware, the supposedly-excluded middle range will also be identity-mapped (CVE-2021-28695). Further, on AMD systems, upon de-assigment of a physical device from a guest, the identity mappings would be left in place, allowing a guest continued access to ranges of memory which it shouldn't have access to anymore (CVE-2021-28696).
CVE-2021-28693 1 Xen 1 Xen 2024-11-21 5.5 Medium
xen/arm: Boot modules are not scrubbed The bootloader will load boot modules (e.g. kernel, initramfs...) in a temporary area before they are copied by Xen to each domain memory. To ensure sensitive data is not leaked from the modules, Xen must "scrub" them before handing the page over to the allocator. Unfortunately, it was discovered that modules will not be scrubbed on Arm.
CVE-2021-28692 1 Xen 1 Xen 2024-11-21 7.1 High
inappropriate x86 IOMMU timeout detection / handling IOMMUs process commands issued to them in parallel with the operation of the CPU(s) issuing such commands. In the current implementation in Xen, asynchronous notification of the completion of such commands is not used. Instead, the issuing CPU spin-waits for the completion of the most recently issued command(s). Some of these waiting loops try to apply a timeout to fail overly-slow commands. The course of action upon a perceived timeout actually being detected is inappropriate: - on Intel hardware guests which did not originally cause the timeout may be marked as crashed, - on AMD hardware higher layer callers would not be notified of the issue, making them continue as if the IOMMU operation succeeded.
CVE-2021-28690 1 Xen 1 Xen 2024-11-21 6.5 Medium
x86: TSX Async Abort protections not restored after S3 This issue relates to the TSX Async Abort speculative security vulnerability. Please see https://xenbits.xen.org/xsa/advisory-305.html for details. Mitigating TAA by disabling TSX (the default and preferred option) requires selecting a non-default setting in MSR_TSX_CTRL. This setting isn't restored after S3 suspend.
CVE-2021-28689 1 Xen 1 Xen 2024-11-21 5.5 Medium
x86: Speculative vulnerabilities with bare (non-shim) 32-bit PV guests 32-bit x86 PV guest kernels run in ring 1. At the time when Xen was developed, this area of the i386 architecture was rarely used, which is why Xen was able to use it to implement paravirtualisation, Xen's novel approach to virtualization. In AMD64, Xen had to use a different implementation approach, so Xen does not use ring 1 to support 64-bit guests. With the focus now being on 64-bit systems, and the availability of explicit hardware support for virtualization, fixing speculation issues in ring 1 is not a priority for processor companies. Indirect Branch Restricted Speculation (IBRS) is an architectural x86 extension put together to combat speculative execution sidechannel attacks, including Spectre v2. It was retrofitted in microcode to existing CPUs. For more details on Spectre v2, see: http://xenbits.xen.org/xsa/advisory-254.html However, IBRS does not architecturally protect ring 0 from predictions learnt in ring 1. For more details, see: https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-restricted-speculation Similar situations may exist with other mitigations for other kinds of speculative execution attacks. The situation is quite likely to be similar for speculative execution attacks which have yet to be discovered, disclosed, or mitigated.
CVE-2021-28687 1 Xen 1 Xen 2024-11-21 5.5 Medium
HVM soft-reset crashes toolstack libxl requires all data structures passed across its public interface to be initialized before use and disposed of afterwards by calling a specific set of functions. Many internal data structures also require this initialize / dispose discipline, but not all of them. When the "soft reset" feature was implemented, the libxl__domain_suspend_state structure didn't require any initialization or disposal. At some point later, an initialization function was introduced for the structure; but the "soft reset" path wasn't refactored to call the initialization function. When a guest nwo initiates a "soft reboot", uninitialized data structure leads to an assert() when later code finds the structure in an unexpected state. The effect of this is to crash the process monitoring the guest. How this affects the system depends on the structure of the toolstack. For xl, this will have no security-relevant effect: every VM has its own independent monitoring process, which contains no state. The domain in question will hang in a crashed state, but can be destroyed by `xl destroy` just like any other non-cooperating domain. For daemon-based toolstacks linked against libxl, such as libvirt, this will crash the toolstack, losing the state of any in-progress operations (localized DoS), and preventing further administrator operations unless the daemon is configured to restart automatically (system-wide DoS). If crashes "leak" resources, then repeated crashes could use up resources, also causing a system-wide DoS.
CVE-2021-28039 3 Linux, Netapp, Xen 4 Linux Kernel, Cloud Backup, Solidfire Baseboard Management Controller Firmware and 1 more 2024-11-21 6.5 Medium
An issue was discovered in the Linux kernel 5.9.x through 5.11.3, as used with Xen. In some less-common configurations, an x86 PV guest OS user can crash a Dom0 or driver domain via a large amount of I/O activity. The issue relates to misuse of guest physical addresses when a configuration has CONFIG_XEN_UNPOPULATED_ALLOC but not CONFIG_XEN_BALLOON_MEMORY_HOTPLUG.
CVE-2021-27379 2 Debian, Xen 2 Debian Linux, Xen 2024-11-21 7.8 High
An issue was discovered in Xen through 4.11.x, allowing x86 Intel HVM guest OS users to achieve unintended read/write DMA access, and possibly cause a denial of service (host OS crash) or gain privileges. This occurs because a backport missed a flush, and thus IOMMU updates were not always correct. NOTE: this issue exists because of an incomplete fix for CVE-2020-15565.
CVE-2021-26933 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 5.5 Medium
An issue was discovered in Xen 4.9 through 4.14.x. On Arm, a guest is allowed to control whether memory accesses are bypassing the cache. This means that Xen needs to ensure that all writes (such as the ones during scrubbing) have reached the memory before handing over the page to a guest. Unfortunately, the operation to clean the cache is happening before checking if the page was scrubbed. Therefore there is no guarantee when all the writes will reach the memory.
CVE-2021-26314 6 Amd, Arm, Broadcom and 3 more 11 Ryzen 5 5600x, Ryzen 7 2700x, Ryzen Threadripper 2990wx and 8 more 2024-11-21 5.5 Medium
Potential floating point value injection in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution with incorrect floating point results, may cause the use of incorrect data from FPVI and may result in data leakage.
CVE-2021-26313 6 Amd, Arm, Broadcom and 3 more 11 Ryzen 5 5600x, Ryzen 7 2700x, Ryzen Threadripper 2990wx and 8 more 2024-11-21 5.5 Medium
Potential speculative code store bypass in all supported CPU products, in conjunction with software vulnerabilities relating to speculative execution of overwritten instructions, may cause an incorrect speculation and could result in data leakage.
CVE-2020-29571 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.2 Medium
An issue was discovered in Xen through 4.14.x. A bounds check common to most operation time functions specific to FIFO event channels depends on the CPU observing consistent state. While the producer side uses appropriately ordered writes, the consumer side isn't protected against re-ordered reads, and may hence end up de-referencing a NULL pointer. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system. Only Arm systems may be vulnerable. Whether a system is vulnerable depends on the specific CPU. x86 systems are not vulnerable.
CVE-2020-29570 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.2 Medium
An issue was discovered in Xen through 4.14.x. Recording of the per-vCPU control block mapping maintained by Xen and that of pointers into the control block is reversed. The consumer assumes, seeing the former initialized, that the latter are also ready for use. Malicious or buggy guest kernels can mount a Denial of Service (DoS) attack affecting the entire system.
CVE-2020-29569 4 Debian, Linux, Netapp and 1 more 7 Debian Linux, Linux Kernel, Hci Compute Node and 4 more 2024-11-21 8.8 High
An issue was discovered in the Linux kernel through 5.10.1, as used with Xen through 4.14.x. The Linux kernel PV block backend expects the kernel thread handler to reset ring->xenblkd to NULL when stopped. However, the handler may not have time to run if the frontend quickly toggles between the states connect and disconnect. As a consequence, the block backend may re-use a pointer after it was freed. A misbehaving guest can trigger a dom0 crash by continuously connecting / disconnecting a block frontend. Privilege escalation and information leaks cannot be ruled out. This only affects systems with a Linux blkback.
CVE-2020-29568 2 Debian, Xen 2 Debian Linux, Xen 2024-11-21 6.5 Medium
An issue was discovered in Xen through 4.14.x. Some OSes (such as Linux, FreeBSD, and NetBSD) are processing watch events using a single thread. If the events are received faster than the thread is able to handle, they will get queued. As the queue is unbounded, a guest may be able to trigger an OOM in the backend. All systems with a FreeBSD, Linux, or NetBSD (any version) dom0 are vulnerable.
CVE-2020-29567 2 Fedoraproject, Xen 2 Fedora, Xen 2024-11-21 6.2 Medium
An issue was discovered in Xen 4.14.x. When moving IRQs between CPUs to distribute the load of IRQ handling, IRQ vectors are dynamically allocated and de-allocated on the relevant CPUs. De-allocation has to happen when certain constraints are met. If these conditions are not met when first checked, the checking CPU may send an interrupt to itself, in the expectation that this IRQ will be delivered only after the condition preventing the cleanup has cleared. For two specific IRQ vectors, this expectation was violated, resulting in a continuous stream of self-interrupts, which renders the CPU effectively unusable. A domain with a passed through PCI device can cause lockup of a physical CPU, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are vulnerable. Arm systems are not vulnerable. Only guests with physical PCI devices passed through to them can exploit the vulnerability.
CVE-2020-29566 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 5.5 Medium
An issue was discovered in Xen through 4.14.x. When they require assistance from the device model, x86 HVM guests must be temporarily de-scheduled. The device model will signal Xen when it has completed its operation, via an event channel, so that the relevant vCPU is rescheduled. If the device model were to signal Xen without having actually completed the operation, the de-schedule / re-schedule cycle would repeat. If, in addition, Xen is resignalled very quickly, the re-schedule may occur before the de-schedule was fully complete, triggering a shortcut. This potentially repeating process uses ordinary recursive function calls, and thus could result in a stack overflow. A malicious or buggy stubdomain serving a HVM guest can cause Xen to crash, resulting in a Denial of Service (DoS) to the entire host. Only x86 systems are affected. Arm systems are not affected. Only x86 stubdomains serving HVM guests can exploit the vulnerability.