| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: Fix use-after-free in tipc_conn_close().
syzbot reported a null-ptr-deref in tipc_conn_close() during netns
dismantle. [0]
tipc_topsrv_stop() iterates tipc_net(net)->topsrv->conn_idr and calls
tipc_conn_close() for each tipc_conn.
The problem is that tipc_conn_close() is called after releasing the
IDR lock.
At the same time, there might be tipc_conn_recv_work() running and it
could call tipc_conn_close() for the same tipc_conn and release its
last ->kref.
Once we release the IDR lock in tipc_topsrv_stop(), there is no
guarantee that the tipc_conn is alive.
Let's hold the ref before releasing the lock and put the ref after
tipc_conn_close() in tipc_topsrv_stop().
[0]:
BUG: KASAN: use-after-free in tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
Read of size 8 at addr ffff888099305a08 by task kworker/u4:3/435
CPU: 0 PID: 435 Comm: kworker/u4:3 Not tainted 4.19.204-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1fc/0x2ef lib/dump_stack.c:118
print_address_description.cold+0x54/0x219 mm/kasan/report.c:256
kasan_report_error.cold+0x8a/0x1b9 mm/kasan/report.c:354
kasan_report mm/kasan/report.c:412 [inline]
__asan_report_load8_noabort+0x88/0x90 mm/kasan/report.c:433
tipc_conn_close+0x122/0x140 net/tipc/topsrv.c:165
tipc_topsrv_stop net/tipc/topsrv.c:701 [inline]
tipc_topsrv_exit_net+0x27b/0x5c0 net/tipc/topsrv.c:722
ops_exit_list+0xa5/0x150 net/core/net_namespace.c:153
cleanup_net+0x3b4/0x8b0 net/core/net_namespace.c:553
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Allocated by task 23:
kmem_cache_alloc_trace+0x12f/0x380 mm/slab.c:3625
kmalloc include/linux/slab.h:515 [inline]
kzalloc include/linux/slab.h:709 [inline]
tipc_conn_alloc+0x43/0x4f0 net/tipc/topsrv.c:192
tipc_topsrv_accept+0x1b5/0x280 net/tipc/topsrv.c:470
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
Freed by task 23:
__cache_free mm/slab.c:3503 [inline]
kfree+0xcc/0x210 mm/slab.c:3822
tipc_conn_kref_release net/tipc/topsrv.c:150 [inline]
kref_put include/linux/kref.h:70 [inline]
conn_put+0x2cd/0x3a0 net/tipc/topsrv.c:155
process_one_work+0x864/0x1570 kernel/workqueue.c:2153
worker_thread+0x64c/0x1130 kernel/workqueue.c:2296
kthread+0x33f/0x460 kernel/kthread.c:259
ret_from_fork+0x24/0x30 arch/x86/entry/entry_64.S:415
The buggy address belongs to the object at ffff888099305a00
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 8 bytes inside of
512-byte region [ffff888099305a00, ffff888099305c00)
The buggy address belongs to the page:
page:ffffea000264c140 count:1 mapcount:0 mapping:ffff88813bff0940 index:0x0
flags: 0xfff00000000100(slab)
raw: 00fff00000000100 ffffea00028b6b88 ffffea0002cd2b08 ffff88813bff0940
raw: 0000000000000000 ffff888099305000 0000000100000006 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888099305900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888099305a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888099305a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888099305b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb |
| In the Linux kernel, the following vulnerability has been resolved:
tls: always refresh the queue when reading sock
After recent changes in net-next TCP compacts skbs much more
aggressively. This unearthed a bug in TLS where we may try
to operate on an old skb when checking if all skbs in the
queue have matching decrypt state and geometry.
BUG: KASAN: slab-use-after-free in tls_strp_check_rcv+0x898/0x9a0 [tls]
(net/tls/tls_strp.c:436 net/tls/tls_strp.c:530 net/tls/tls_strp.c:544)
Read of size 4 at addr ffff888013085750 by task tls/13529
CPU: 2 UID: 0 PID: 13529 Comm: tls Not tainted 6.16.0-rc5-virtme
Call Trace:
kasan_report+0xca/0x100
tls_strp_check_rcv+0x898/0x9a0 [tls]
tls_rx_rec_wait+0x2c9/0x8d0 [tls]
tls_sw_recvmsg+0x40f/0x1aa0 [tls]
inet_recvmsg+0x1c3/0x1f0
Always reload the queue, fast path is to have the record in the queue
when we wake, anyway (IOW the path going down "if !strp->stm.full_len"). |
| In the Linux kernel, the following vulnerability has been resolved:
rpl: Fix use-after-free in rpl_do_srh_inline().
Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers
the splat below [0].
rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after
skb_cow_head(), which is illegal as the header could be freed then.
Let's fix it by making oldhdr to a local struct instead of a pointer.
[0]:
[root@fedora net]# ./lwt_dst_cache_ref_loop.sh
...
TEST: rpl (input)
[ 57.631529] ==================================================================
BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
Read of size 40 at addr ffff888122bf96d8 by task ping6/1543
CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1))
__asan_memmove (mm/kasan/shadow.c:94 (discriminator 2))
rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282)
lwtunnel_input (net/core/lwtunnel.c:459)
ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1))
__netif_receive_skb_one_core (net/core/dev.c:5967)
process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440)
__napi_poll.constprop.0 (net/core/dev.c:7452)
net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643)
handle_softirqs (kernel/softirq.c:579)
do_softirq (kernel/softirq.c:480 (discriminator 20))
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
__dev_queue_xmit (net/core/dev.c:4740)
ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141)
ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226)
ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248)
ip6_send_skb (net/ipv6/ip6_output.c:1983)
rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918)
__sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1))
__x64_sys_sendto (net/socket.c:2231)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f68cffb2a06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06
RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003
RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4
R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0
</TASK>
Allocated by task 1543:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345)
kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249)
kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88))
__alloc_skb (net/core/skbuff.c:669)
__ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1))
ip6_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Tear down vGIC on failed vCPU creation
If kvm_arch_vcpu_create() fails to share the vCPU page with the
hypervisor, we propagate the error back to the ioctl but leave the
vGIC vCPU data initialised. Note only does this leak the corresponding
memory when the vCPU is destroyed but it can also lead to use-after-free
if the redistributor device handling tries to walk into the vCPU.
Add the missing cleanup to kvm_arch_vcpu_create(), ensuring that the
vGIC vCPU structures are destroyed on error. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Make ICC_*SGI*_EL1 undef in the absence of a vGICv3
On a system with a GICv3, if a guest hasn't been configured with
GICv3 and that the host is not capable of GICv2 emulation,
a write to any of the ICC_*SGI*_EL1 registers is trapped to EL2.
We therefore try to emulate the SGI access, only to hit a NULL
pointer as no private interrupt is allocated (no GIC, remember?).
The obvious fix is to give the guest what it deserves, in the
shape of a UNDEF exception. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
There is a potential UAF scenario in the case of an LPI translation
cache hit racing with an operation that invalidates the cache, such
as a DISCARD ITS command. The root of the problem is that
vgic_its_check_cache() does not elevate the refcount on the vgic_irq
before dropping the lock that serializes refcount changes.
Have vgic_its_check_cache() raise the refcount on the returned vgic_irq
and add the corresponding decrement after queueing the interrupt. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-rdma: fix possible use-after-free in transport error_recovery work
While nvme_rdma_submit_async_event_work is checking the ctrl and queue
state before preparing the AER command and scheduling io_work, in order
to fully prevent a race where this check is not reliable the error
recovery work must flush async_event_work before continuing to destroy
the admin queue after setting the ctrl state to RESETTING such that
there is no race .submit_async_event and the error recovery handler
itself changing the ctrl state. |
| A flaw was found in the asynchronous message queue handling of the libsoup library, widely used by GNOME and WebKit-based applications to manage HTTP/2 communications. When network operations are aborted at specific timing intervals, an internal message queue item may be freed twice due to missing state synchronization. This leads to a use-after-free memory access, potentially crashing the affected application. Attackers could exploit this behavior remotely by triggering specific HTTP/2 read and cancel sequences, resulting in a denial-of-service condition. |
| Use-after-free in the Disability Access APIs component. This vulnerability affects Firefox < 146.0.1. |
| Starting with Firefox 142, it was possible for a compromised child process to trigger a use-after-free in the GPU or browser process using WebGPU-related IPC calls. This may have been usable to escape the child process sandbox. This vulnerability affects Firefox < 144.0.2. |
| In the Linux kernel, the following vulnerability has been resolved:
net: atm: add lec_mutex
syzbot found its way in net/atm/lec.c, and found an error path
in lecd_attach() could leave a dangling pointer in dev_lec[].
Add a mutex to protect dev_lecp[] uses from lecd_attach(),
lec_vcc_attach() and lec_mcast_attach().
Following patch will use this mutex for /proc/net/atm/lec.
BUG: KASAN: slab-use-after-free in lecd_attach net/atm/lec.c:751 [inline]
BUG: KASAN: slab-use-after-free in lane_ioctl+0x2224/0x23e0 net/atm/lec.c:1008
Read of size 8 at addr ffff88807c7b8e68 by task syz.1.17/6142
CPU: 1 UID: 0 PID: 6142 Comm: syz.1.17 Not tainted 6.16.0-rc1-syzkaller-00239-g08215f5486ec #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xcd/0x680 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
lecd_attach net/atm/lec.c:751 [inline]
lane_ioctl+0x2224/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated by task 6132:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4328 [inline]
__kvmalloc_node_noprof+0x27b/0x620 mm/slub.c:5015
alloc_netdev_mqs+0xd2/0x1570 net/core/dev.c:11711
lecd_attach net/atm/lec.c:737 [inline]
lane_ioctl+0x17db/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 6132:
kasan_save_stack+0x33/0x60 mm/kasan/common.c:47
kasan_save_track+0x14/0x30 mm/kasan/common.c:68
kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x51/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2381 [inline]
slab_free mm/slub.c:4643 [inline]
kfree+0x2b4/0x4d0 mm/slub.c:4842
free_netdev+0x6c5/0x910 net/core/dev.c:11892
lecd_attach net/atm/lec.c:744 [inline]
lane_ioctl+0x1ce8/0x23e0 net/atm/lec.c:1008
do_vcc_ioctl+0x12c/0x930 net/atm/ioctl.c:159
sock_do_ioctl+0x118/0x280 net/socket.c:1190
sock_ioctl+0x227/0x6b0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:893 |
| In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: fix double-free on mc_dev
The blamed commit tried to simplify how the deallocations are done but,
in the process, introduced a double-free on the mc_dev variable.
In case the MC device is a DPRC, a new mc_bus is allocated and the
mc_dev variable is just a reference to one of its fields. In this
circumstance, on the error path only the mc_bus should be freed.
This commit introduces back the following checkpatch warning which is a
false-positive.
WARNING: kfree(NULL) is safe and this check is probably not required
+ if (mc_bus)
+ kfree(mc_bus); |
| A Use-After-Free vulnerability has been discovered in GRUB's gettext module. This flaw stems from a programming error where the gettext command remains registered in memory after its module is unloaded. An attacker can exploit this condition by invoking the orphaned command, causing the application to access a memory location that is no longer valid. An attacker could exploit this vulnerability to cause grub to crash, leading to a Denial of Service. Possible data integrity or confidentiality compromise is not discarded. |
| Use after free in Password Manager in Google Chrome prior to 143.0.7499.110 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: Medium) |
| In the Linux kernel, the following vulnerability has been resolved:
lz4: fix LZ4_decompress_safe_partial read out of bound
When partialDecoding, it is EOF if we've either filled the output buffer
or can't proceed with reading an offset for following match.
In some extreme corner cases when compressed data is suitably corrupted,
UAF will occur. As reported by KASAN [1], LZ4_decompress_safe_partial
may lead to read out of bound problem during decoding. lz4 upstream has
fixed it [2] and this issue has been disscussed here [3] before.
current decompression routine was ported from lz4 v1.8.3, bumping
lib/lz4 to v1.9.+ is certainly a huge work to be done later, so, we'd
better fix it first.
[1] https://lore.kernel.org/all/000000000000830d1205cf7f0477@google.com/
[2] https://github.com/lz4/lz4/commit/c5d6f8a8be3927c0bec91bcc58667a6cfad244ad#
[3] https://lore.kernel.org/all/CC666AE8-4CA4-4951-B6FB-A2EFDE3AC03B@fb.com/ |
| A double free vulnerability [CWE-415] vulnerability in Fortinet FortiOS 6.4 all versions may allow a privileged attacker to execute code or commands via crafted HTTP or HTTPs requests. |
| The module will parse a <pattern> node which is not a child of a structural node. The node will be deleted after creation but might be accessed later leading to a use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix double free in delayed_free
The double free could happen in the following path.
exfat_create_upcase_table()
exfat_create_upcase_table() : return error
exfat_free_upcase_table() : free ->vol_utbl
exfat_load_default_upcase_table : return error
exfat_kill_sb()
delayed_free()
exfat_free_upcase_table() <--------- double free
This patch set ->vol_util as NULL after freeing it. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction
The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last
deref") simplified cm_id resource management by freeing cm_id once all
references to the cm_id were removed. The references are removed either
upon completion of iw_cm event handlers or when the application destroys
the cm_id. This commit introduced the use-after-free condition where
cm_id_private object could still be in use by event handler works during
the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a
use-after-free related to destroying CM IDs") addressed this use-after-
free by flushing all pending works at the cm_id destruction.
However, still another use-after-free possibility remained. It happens
with the work objects allocated for each cm_id_priv within
alloc_work_entries() during cm_id creation, and subsequently freed in
dealloc_work_entries() once all references to the cm_id are removed.
If the cm_id's last reference is decremented in the event handler work,
the work object for the work itself gets removed, and causes the use-
after-free BUG below:
BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250
Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091
CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
Workqueue: 0x0 (iw_cm_wq)
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x90
print_report+0x174/0x554
? __virt_addr_valid+0x208/0x430
? __pwq_activate_work+0x1ff/0x250
kasan_report+0xae/0x170
? __pwq_activate_work+0x1ff/0x250
__pwq_activate_work+0x1ff/0x250
pwq_dec_nr_in_flight+0x8c5/0xfb0
process_one_work+0xc11/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5ef/0xfd0
? __pfx_worker_thread+0x10/0x10
kthread+0x3b0/0x770
? __pfx_kthread+0x10/0x10
? rcu_is_watching+0x11/0xb0
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 147416:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
alloc_work_entries+0xa9/0x260 [iw_cm]
iw_cm_connect+0x23/0x4a0 [iw_cm]
rdma_connect_locked+0xbfd/0x1920 [rdma_cm]
nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma]
cma_cm_event_handler+0xae/0x320 [rdma_cm]
cma_work_handler+0x106/0x1b0 [rdma_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Freed by task 147091:
kasan_save_stack+0x2c/0x50
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kfree+0x13a/0x4b0
dealloc_work_entries+0x125/0x1f0 [iw_cm]
iwcm_deref_id+0x6f/0xa0 [iw_cm]
cm_work_handler+0x136/0x1ba0 [iw_cm]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
Last potentially related work creation:
kasan_save_stack+0x2c/0x50
kasan_record_aux_stack+0xa3/0xb0
__queue_work+0x2ff/0x1390
queue_work_on+0x67/0xc0
cm_event_handler+0x46a/0x820 [iw_cm]
siw_cm_upcall+0x330/0x650 [siw]
siw_cm_work_handler+0x6b9/0x2b20 [siw]
process_one_work+0x84f/0x1460
worker_thread+0x5ef/0xfd0
kthread+0x3b0/0x770
ret_from_fork+0x30/0x70
ret_from_fork_asm+0x1a/0x30
This BUG is reproducible by repeating the blktests test case nvme/061
for the rdma transport and the siw driver.
To avoid the use-after-free of cm_id_private work objects, ensure that
the last reference to the cm_id is decremented not in the event handler
works, but in the cm_id destruction context. For that purpose, mo
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipc: fix to protect IPCS lookups using RCU
syzbot reported that it discovered a use-after-free vulnerability, [0]
[0]: https://lore.kernel.org/all/67af13f8.050a0220.21dd3.0038.GAE@google.com/
idr_for_each() is protected by rwsem, but this is not enough. If it is
not protected by RCU read-critical region, when idr_for_each() calls
radix_tree_node_free() through call_rcu() to free the radix_tree_node
structure, the node will be freed immediately, and when reading the next
node in radix_tree_for_each_slot(), the already freed memory may be read.
Therefore, we need to add code to make sure that idr_for_each() is
protected within the RCU read-critical region when we call it in
shm_destroy_orphaned(). |