| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix invalid context error in dml helper
[Why]
"BUG: sleeping function called from invalid context" error.
after:
"drm/amd/display: Protect FPU in dml2_validate()/dml21_validate()"
The populate_dml_plane_cfg_from_plane_state() uses the GFP_KERNEL flag
for memory allocation, which shouldn't be used in atomic contexts.
The allocation is needed only for using another helper function
get_scaler_data_for_plane().
[How]
Modify helpers to pass a pointer to scaler_data within existing context,
eliminating the need for dynamic memory allocation/deallocation
and copying.
(cherry picked from commit bd3e84bc98f81b44f2c43936bdadc3241d654259) |
| In the Linux kernel, the following vulnerability has been resolved:
staging: bcm2835-camera: Initialise dev in v4l2_dev
Commit 42a2f6664e18 ("staging: vc04_services: Move global g_state to
vchiq_state") changed mmal_init to pass dev->v4l2_dev.dev to
vchiq_mmal_init, however nothing iniitialised dev->v4l2_dev, so we got
a NULL pointer dereference.
Set dev->v4l2_dev.dev during bcm2835_mmal_probe. The device pointer
could be passed into v4l2_device_register to set it, however that also
has other effects that would need additional changes. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix out-of-bounds access during multi-link element defragmentation
Currently during the multi-link element defragmentation process, the
multi-link element length added to the total IEs length when calculating
the length of remaining IEs after the multi-link element in
cfg80211_defrag_mle(). This could lead to out-of-bounds access if the
multi-link element or its corresponding fragment elements are the last
elements in the IEs buffer.
To address this issue, correctly calculate the remaining IEs length by
deducting the multi-link element end offset from total IEs end offset. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Fix missing check for zpci_create_device() error return
The zpci_create_device() function returns an error pointer that needs to
be checked before dereferencing it as a struct zpci_dev pointer. Add the
missing check in __clp_add() where it was missed when adding the
scan_list in the fixed commit. Simply not adding the device to the scan
list results in the previous behavior. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: module: Fix out-of-bounds relocation access
The current code allows rel[j] to access one element past the end of the
relocation section. Simplify to num_relocations which is equivalent to
the existing size expression. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: exynos: Disable iocc if dma-coherent property isn't set
If dma-coherent property isn't set then descriptors are non-cacheable
and the iocc shareability bits should be disabled. Without this UFS can
end up in an incompatible configuration and suffer from random cache
related stability issues. |
| In the Linux kernel, the following vulnerability has been resolved:
block: integrity: Do not call set_page_dirty_lock()
Placing multiple protection information buffers inside the same page
can lead to oopses because set_page_dirty_lock() can't be called from
interrupt context.
Since a protection information buffer is not backed by a file there is
no point in setting its page dirty, there is nothing to synchronize.
Drop the call to set_page_dirty_lock() and remove the last argument to
bio_integrity_unpin_bvec(). |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix resource leak in blk_register_queue() error path
When registering a queue fails after blk_mq_sysfs_register() is
successful but the function later encounters an error, we need
to clean up the blk_mq_sysfs resources.
Add the missing blk_mq_sysfs_unregister() call in the error path
to properly clean up these resources and prevent a memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid use f2fs_bug_on() in f2fs_new_node_page()
As Dipanjan Das <mail.dipanjan.das@gmail.com> reported, syzkaller
found a f2fs bug as below:
RIP: 0010:f2fs_new_node_page+0x19ac/0x1fc0 fs/f2fs/node.c:1295
Call Trace:
write_all_xattrs fs/f2fs/xattr.c:487 [inline]
__f2fs_setxattr+0xe76/0x2e10 fs/f2fs/xattr.c:743
f2fs_setxattr+0x233/0xab0 fs/f2fs/xattr.c:790
f2fs_xattr_generic_set+0x133/0x170 fs/f2fs/xattr.c:86
__vfs_setxattr+0x115/0x180 fs/xattr.c:182
__vfs_setxattr_noperm+0x125/0x5f0 fs/xattr.c:216
__vfs_setxattr_locked+0x1cf/0x260 fs/xattr.c:277
vfs_setxattr+0x13f/0x330 fs/xattr.c:303
setxattr+0x146/0x160 fs/xattr.c:611
path_setxattr+0x1a7/0x1d0 fs/xattr.c:630
__do_sys_lsetxattr fs/xattr.c:653 [inline]
__se_sys_lsetxattr fs/xattr.c:649 [inline]
__x64_sys_lsetxattr+0xbd/0x150 fs/xattr.c:649
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
NAT entry and nat bitmap can be inconsistent, e.g. one nid is free
in nat bitmap, and blkaddr in its NAT entry is not NULL_ADDR, it
may trigger BUG_ON() in f2fs_new_node_page(), fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Use is_kdump_kernel() to check for kdump
The smartpqi driver checks the reset_devices variable to determine
whether special adjustments need to be made for kdump. This has the
effect that after a regular kexec reboot, some driver parameters such as
max_transfer_size are much lower than usual. More importantly, kexec
reboot tests have revealed memory corruption caused by the driver log
being written to system memory after a kexec.
Fix this by testing is_kdump_kernel() rather than reset_devices where
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: ecdsa - Harden against integer overflows in DIV_ROUND_UP()
Herbert notes that DIV_ROUND_UP() may overflow unnecessarily if an ecdsa
implementation's ->key_size() callback returns an unusually large value.
Herbert instead suggests (for a division by 8):
X / 8 + !!(X & 7)
Based on this formula, introduce a generic DIV_ROUND_UP_POW2() macro and
use it in lieu of DIV_ROUND_UP() for ->key_size() return values.
Additionally, use the macro in ecc_digits_from_bytes(), whose "nbytes"
parameter is a ->key_size() return value in some instances, or a
user-specified ASN.1 length in the case of ecdsa_get_signature_rs(). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: class: Invalidate USB device pointers on partner unregistration
To avoid using invalid USB device pointers after a Type-C partner
disconnects, this patch clears the pointers upon partner unregistration.
This ensures a clean state for future connections. |
| In the Linux kernel, the following vulnerability has been resolved:
pds_core: Prevent possible adminq overflow/stuck condition
The pds_core's adminq is protected by the adminq_lock, which prevents
more than 1 command to be posted onto it at any one time. This makes it
so the client drivers cannot simultaneously post adminq commands.
However, the completions happen in a different context, which means
multiple adminq commands can be posted sequentially and all waiting
on completion.
On the FW side, the backing adminq request queue is only 16 entries
long and the retry mechanism and/or overflow/stuck prevention is
lacking. This can cause the adminq to get stuck, so commands are no
longer processed and completions are no longer sent by the FW.
As an initial fix, prevent more than 16 outstanding adminq commands so
there's no way to cause the adminq from getting stuck. This works
because the backing adminq request queue will never have more than 16
pending adminq commands, so it will never overflow. This is done by
reducing the adminq depth to 16. |
| In the Linux kernel, the following vulnerability has been resolved:
fix a couple of races in MNT_TREE_BENEATH handling by do_move_mount()
Normally do_lock_mount(path, _) is locking a mountpoint pinned by
*path and at the time when matching unlock_mount() unlocks that
location it is still pinned by the same thing.
Unfortunately, for 'beneath' case it's no longer that simple -
the object being locked is not the one *path points to. It's the
mountpoint of path->mnt. The thing is, without sufficient locking
->mnt_parent may change under us and none of the locks are held
at that point. The rules are
* mount_lock stabilizes m->mnt_parent for any mount m.
* namespace_sem stabilizes m->mnt_parent, provided that
m is mounted.
* if either of the above holds and refcount of m is positive,
we are guaranteed the same for refcount of m->mnt_parent.
namespace_sem nests inside inode_lock(), so do_lock_mount() has
to take inode_lock() before grabbing namespace_sem. It does
recheck that path->mnt is still mounted in the same place after
getting namespace_sem, and it does take care to pin the dentry.
It is needed, since otherwise we might end up with racing mount --move
(or umount) happening while we were getting locks; in that case
dentry would no longer be a mountpoint and could've been evicted
on memory pressure along with its inode - not something you want
when grabbing lock on that inode.
However, pinning a dentry is not enough - the matching mount is
also pinned only by the fact that path->mnt is mounted on top it
and at that point we are not holding any locks whatsoever, so
the same kind of races could end up with all references to
that mount gone just as we are about to enter inode_lock().
If that happens, we are left with filesystem being shut down while
we are holding a dentry reference on it; results are not pretty.
What we need to do is grab both dentry and mount at the same time;
that makes inode_lock() safe *and* avoids the problem with fs getting
shut down under us. After taking namespace_sem we verify that
path->mnt is still mounted (which stabilizes its ->mnt_parent) and
check that it's still mounted at the same place. From that point
on to the matching namespace_unlock() we are guaranteed that
mount/dentry pair we'd grabbed are also pinned by being the mountpoint
of path->mnt, so we can quietly drop both the dentry reference (as
the current code does) and mnt one - it's OK to do under namespace_sem,
since we are not dropping the final refs.
That solves the problem on do_lock_mount() side; unlock_mount()
also has one, since dentry is guaranteed to stay pinned only until
the namespace_unlock(). That's easy to fix - just have inode_unlock()
done earlier, while it's still pinned by mp->m_dentry. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix null-ptr-deref in f2fs_get_dnode_of_data
There is issue as follows when test f2fs atomic write:
F2FS-fs (loop0): Can't find valid F2FS filesystem in 2th superblock
F2FS-fs (loop0): invalid crc_offset: 0
F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=1, run fsck to fix.
F2FS-fs (loop0): f2fs_check_nid_range: out-of-range nid=2, run fsck to fix.
==================================================================
BUG: KASAN: null-ptr-deref in f2fs_get_dnode_of_data+0xac/0x16d0
Read of size 8 at addr 0000000000000028 by task rep/1990
CPU: 4 PID: 1990 Comm: rep Not tainted 5.19.0-rc6-next-20220715 #266
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0x91
print_report.cold+0x49a/0x6bb
kasan_report+0xa8/0x130
f2fs_get_dnode_of_data+0xac/0x16d0
f2fs_do_write_data_page+0x2a5/0x1030
move_data_page+0x3c5/0xdf0
do_garbage_collect+0x2015/0x36c0
f2fs_gc+0x554/0x1d30
f2fs_balance_fs+0x7f5/0xda0
f2fs_write_single_data_page+0xb66/0xdc0
f2fs_write_cache_pages+0x716/0x1420
f2fs_write_data_pages+0x84f/0x9a0
do_writepages+0x130/0x3a0
filemap_fdatawrite_wbc+0x87/0xa0
file_write_and_wait_range+0x157/0x1c0
f2fs_do_sync_file+0x206/0x12d0
f2fs_sync_file+0x99/0xc0
vfs_fsync_range+0x75/0x140
f2fs_file_write_iter+0xd7b/0x1850
vfs_write+0x645/0x780
ksys_write+0xf1/0x1e0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
As 3db1de0e582c commit changed atomic write way which new a cow_inode for
atomic write file, and also mark cow_inode as FI_ATOMIC_FILE.
When f2fs_do_write_data_page write cow_inode will use cow_inode's cow_inode
which is NULL. Then will trigger null-ptr-deref.
To solve above issue, introduce FI_COW_FILE flag for COW inode.
Fiexes: 3db1de0e582c("f2fs: change the current atomic write way") |
| In the Linux kernel, the following vulnerability has been resolved:
kprobes: don't call disarm_kprobe() for disabled kprobes
The assumption in __disable_kprobe() is wrong, and it could try to disarm
an already disarmed kprobe and fire the WARN_ONCE() below. [0] We can
easily reproduce this issue.
1. Write 0 to /sys/kernel/debug/kprobes/enabled.
# echo 0 > /sys/kernel/debug/kprobes/enabled
2. Run execsnoop. At this time, one kprobe is disabled.
# /usr/share/bcc/tools/execsnoop &
[1] 2460
PCOMM PID PPID RET ARGS
# cat /sys/kernel/debug/kprobes/list
ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE]
ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE]
3. Write 1 to /sys/kernel/debug/kprobes/enabled, which changes
kprobes_all_disarmed to false but does not arm the disabled kprobe.
# echo 1 > /sys/kernel/debug/kprobes/enabled
# cat /sys/kernel/debug/kprobes/list
ffffffff91345650 r __x64_sys_execve+0x0 [FTRACE]
ffffffff91345650 k __x64_sys_execve+0x0 [DISABLED][FTRACE]
4. Kill execsnoop, when __disable_kprobe() calls disarm_kprobe() for the
disabled kprobe and hits the WARN_ONCE() in __disarm_kprobe_ftrace().
# fg
/usr/share/bcc/tools/execsnoop
^C
Actually, WARN_ONCE() is fired twice, and __unregister_kprobe_top() misses
some cleanups and leaves the aggregated kprobe in the hash table. Then,
__unregister_trace_kprobe() initialises tk->rp.kp.list and creates an
infinite loop like this.
aggregated kprobe.list -> kprobe.list -.
^ |
'.__.'
In this situation, these commands fall into the infinite loop and result
in RCU stall or soft lockup.
cat /sys/kernel/debug/kprobes/list : show_kprobe_addr() enters into the
infinite loop with RCU.
/usr/share/bcc/tools/execsnoop : warn_kprobe_rereg() holds kprobe_mutex,
and __get_valid_kprobe() is stuck in
the loop.
To avoid the issue, make sure we don't call disarm_kprobe() for disabled
kprobes.
[0]
Failed to disarm kprobe-ftrace at __x64_sys_execve+0x0/0x40 (error -2)
WARNING: CPU: 6 PID: 2460 at kernel/kprobes.c:1130 __disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Modules linked in: ena
CPU: 6 PID: 2460 Comm: execsnoop Not tainted 5.19.0+ #28
Hardware name: Amazon EC2 c5.2xlarge/, BIOS 1.0 10/16/2017
RIP: 0010:__disarm_kprobe_ftrace.isra.19 (kernel/kprobes.c:1129)
Code: 24 8b 02 eb c1 80 3d c4 83 f2 01 00 75 d4 48 8b 75 00 89 c2 48 c7 c7 90 fa 0f 92 89 04 24 c6 05 ab 83 01 e8 e4 94 f0 ff <0f> 0b 8b 04 24 eb b1 89 c6 48 c7 c7 60 fa 0f 92 89 04 24 e8 cc 94
RSP: 0018:ffff9e6ec154bd98 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff930f7b00 RCX: 0000000000000001
RDX: 0000000080000001 RSI: ffffffff921461c5 RDI: 00000000ffffffff
RBP: ffff89c504286da8 R08: 0000000000000000 R09: c0000000fffeffff
R10: 0000000000000000 R11: ffff9e6ec154bc28 R12: ffff89c502394e40
R13: ffff89c502394c00 R14: ffff9e6ec154bc00 R15: 0000000000000000
FS: 00007fe800398740(0000) GS:ffff89c812d80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c00057f010 CR3: 0000000103b54006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
__disable_kprobe (kernel/kprobes.c:1716)
disable_kprobe (kernel/kprobes.c:2392)
__disable_trace_kprobe (kernel/trace/trace_kprobe.c:340)
disable_trace_kprobe (kernel/trace/trace_kprobe.c:429)
perf_trace_event_unreg.isra.2 (./include/linux/tracepoint.h:93 kernel/trace/trace_event_perf.c:168)
perf_kprobe_destroy (kernel/trace/trace_event_perf.c:295)
_free_event (kernel/events/core.c:4971)
perf_event_release_kernel (kernel/events/core.c:5176)
perf_release (kernel/events/core.c:5186)
__fput (fs/file_table.c:321)
task_work_run (./include/linux/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix refcount leak in __xfrm_policy_check()
The issue happens on an error path in __xfrm_policy_check(). When the
fetching process of the object `pols[1]` fails, the function simply
returns 0, forgetting to decrement the reference count of `pols[0]`,
which is incremented earlier by either xfrm_sk_policy_lookup() or
xfrm_policy_lookup(). This may result in memory leaks.
Fix it by decreasing the reference count of `pols[0]` in that path. |
| In the Linux kernel, the following vulnerability has been resolved:
can: m_can: m_can_class_allocate_dev(): initialize spin lock on device probe
The spin lock tx_handling_spinlock in struct m_can_classdev is not
being initialized. This leads the following spinlock bad magic
complaint from the kernel, eg. when trying to send CAN frames with
cansend from can-utils:
| BUG: spinlock bad magic on CPU#0, cansend/95
| lock: 0xff60000002ec1010, .magic: 00000000, .owner: <none>/-1, .owner_cpu: 0
| CPU: 0 UID: 0 PID: 95 Comm: cansend Not tainted 6.15.0-rc3-00032-ga79be02bba5c #5 NONE
| Hardware name: MachineWare SIM-V (DT)
| Call Trace:
| [<ffffffff800133e0>] dump_backtrace+0x1c/0x24
| [<ffffffff800022f2>] show_stack+0x28/0x34
| [<ffffffff8000de3e>] dump_stack_lvl+0x4a/0x68
| [<ffffffff8000de70>] dump_stack+0x14/0x1c
| [<ffffffff80003134>] spin_dump+0x62/0x6e
| [<ffffffff800883ba>] do_raw_spin_lock+0xd0/0x142
| [<ffffffff807a6fcc>] _raw_spin_lock_irqsave+0x20/0x2c
| [<ffffffff80536dba>] m_can_start_xmit+0x90/0x34a
| [<ffffffff806148b0>] dev_hard_start_xmit+0xa6/0xee
| [<ffffffff8065b730>] sch_direct_xmit+0x114/0x292
| [<ffffffff80614e2a>] __dev_queue_xmit+0x3b0/0xaa8
| [<ffffffff8073b8fa>] can_send+0xc6/0x242
| [<ffffffff8073d1c0>] raw_sendmsg+0x1a8/0x36c
| [<ffffffff805ebf06>] sock_write_iter+0x9a/0xee
| [<ffffffff801d06ea>] vfs_write+0x184/0x3a6
| [<ffffffff801d0a88>] ksys_write+0xa0/0xc0
| [<ffffffff801d0abc>] __riscv_sys_write+0x14/0x1c
| [<ffffffff8079ebf8>] do_trap_ecall_u+0x168/0x212
| [<ffffffff807a830a>] handle_exception+0x146/0x152
Initializing the spin lock in m_can_class_allocate_dev solves that
problem. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Fix uninitialized memcache pointer in user_mem_abort()
Commit fce886a60207 ("KVM: arm64: Plumb the pKVM MMU in KVM") made the
initialization of the local memcache variable in user_mem_abort()
conditional, leaving a codepath where it is used uninitialized via
kvm_pgtable_stage2_map().
This can fail on any path that requires a stage-2 allocation
without transition via a permission fault or dirty logging.
Fix this by making sure that memcache is always valid. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4.2 fix problems with __nfs42_ssc_open
A destination server while doing a COPY shouldn't accept using the
passed in filehandle if its not a regular filehandle.
If alloc_file_pseudo() has failed, we need to decrement a reference
on the newly created inode, otherwise it leaks. |