CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: reject malicious packets in ipv6_gso_segment()
syzbot was able to craft a packet with very long IPv6 extension headers
leading to an overflow of skb->transport_header.
This 16bit field has a limited range.
Add skb_reset_transport_header_careful() helper and use it
from ipv6_gso_segment()
WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 skb_reset_transport_header include/linux/skbuff.h:3032 [inline]
WARNING: CPU: 0 PID: 5871 at ./include/linux/skbuff.h:3032 ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151
Modules linked in:
CPU: 0 UID: 0 PID: 5871 Comm: syz-executor211 Not tainted 6.16.0-rc6-syzkaller-g7abc678e3084 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:skb_reset_transport_header include/linux/skbuff.h:3032 [inline]
RIP: 0010:ipv6_gso_segment+0x15e2/0x21e0 net/ipv6/ip6_offload.c:151
Call Trace:
<TASK>
skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53
nsh_gso_segment+0x54a/0xe10 net/nsh/nsh.c:110
skb_mac_gso_segment+0x31c/0x640 net/core/gso.c:53
__skb_gso_segment+0x342/0x510 net/core/gso.c:124
skb_gso_segment include/net/gso.h:83 [inline]
validate_xmit_skb+0x857/0x11b0 net/core/dev.c:3950
validate_xmit_skb_list+0x84/0x120 net/core/dev.c:4000
sch_direct_xmit+0xd3/0x4b0 net/sched/sch_generic.c:329
__dev_xmit_skb net/core/dev.c:4102 [inline]
__dev_queue_xmit+0x17b6/0x3a70 net/core/dev.c:4679 |
In the Linux kernel, the following vulnerability has been resolved:
benet: fix BUG when creating VFs
benet crashes as soon as SRIOV VFs are created:
kernel BUG at mm/vmalloc.c:3457!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 4 UID: 0 PID: 7408 Comm: test.sh Kdump: loaded Not tainted 6.16.0+ #1 PREEMPT(voluntary)
[...]
RIP: 0010:vunmap+0x5f/0x70
[...]
Call Trace:
<TASK>
__iommu_dma_free+0xe8/0x1c0
be_cmd_set_mac_list+0x3fe/0x640 [be2net]
be_cmd_set_mac+0xaf/0x110 [be2net]
be_vf_eth_addr_config+0x19f/0x330 [be2net]
be_vf_setup+0x4f7/0x990 [be2net]
be_pci_sriov_configure+0x3a1/0x470 [be2net]
sriov_numvfs_store+0x20b/0x380
kernfs_fop_write_iter+0x354/0x530
vfs_write+0x9b9/0xf60
ksys_write+0xf3/0x1d0
do_syscall_64+0x8c/0x3d0
be_cmd_set_mac_list() calls dma_free_coherent() under a spin_lock_bh.
Fix it by freeing only after the lock has been released. |
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Exit early on perf_mmap() fail
When perf_mmap() fails to allocate a buffer, it still invokes the
event_mapped() callback of the related event. On X86 this might increase
the perf_rdpmc_allowed reference counter. But nothing undoes this as
perf_mmap_close() is never called in this case, which causes another
reference count leak.
Return early on failure to prevent that. |
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Prevent VMA split of buffer mappings
The perf mmap code is careful about mmap()'ing the user page with the
ringbuffer and additionally the auxiliary buffer, when the event supports
it. Once the first mapping is established, subsequent mapping have to use
the same offset and the same size in both cases. The reference counting for
the ringbuffer and the auxiliary buffer depends on this being correct.
Though perf does not prevent that a related mapping is split via mmap(2),
munmap(2) or mremap(2). A split of a VMA results in perf_mmap_open() calls,
which take reference counts, but then the subsequent perf_mmap_close()
calls are not longer fulfilling the offset and size checks. This leads to
reference count leaks.
As perf already has the requirement for subsequent mappings to match the
initial mapping, the obvious consequence is that VMA splits, caused by
resizing of a mapping or partial unmapping, have to be prevented.
Implement the vm_operations_struct::may_split() callback and return
unconditionally -EINVAL.
That ensures that the mapping offsets and sizes cannot be changed after the
fact. Remapping to a different fixed address with the same size is still
possible as it takes the references for the new mapping and drops those of
the old mapping. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget : fix use-after-free in composite_dev_cleanup()
1. In func configfs_composite_bind() -> composite_os_desc_req_prepare():
if kmalloc fails, the pointer cdev->os_desc_req will be freed but not
set to NULL. Then it will return a failure to the upper-level function.
2. in func configfs_composite_bind() -> composite_dev_cleanup():
it will checks whether cdev->os_desc_req is NULL. If it is not NULL, it
will attempt to use it.This will lead to a use-after-free issue.
BUG: KASAN: use-after-free in composite_dev_cleanup+0xf4/0x2c0
Read of size 8 at addr 0000004827837a00 by task init/1
CPU: 10 PID: 1 Comm: init Tainted: G O 5.10.97-oh #1
kasan_report+0x188/0x1cc
__asan_load8+0xb4/0xbc
composite_dev_cleanup+0xf4/0x2c0
configfs_composite_bind+0x210/0x7ac
udc_bind_to_driver+0xb4/0x1ec
usb_gadget_probe_driver+0xec/0x21c
gadget_dev_desc_UDC_store+0x264/0x27c |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Restrict conditions for adding duplicating netems to qdisc tree
netem_enqueue's duplication prevention logic breaks when a netem
resides in a qdisc tree with other netems - this can lead to a
soft lockup and OOM loop in netem_dequeue, as seen in [1].
Ensure that a duplicating netem cannot exist in a tree with other
netems.
Previous approaches suggested in discussions in chronological order:
1) Track duplication status or ttl in the sk_buff struct. Considered
too specific a use case to extend such a struct, though this would
be a resilient fix and address other previous and potential future
DOS bugs like the one described in loopy fun [2].
2) Restrict netem_enqueue recursion depth like in act_mirred with a
per cpu variable. However, netem_dequeue can call enqueue on its
child, and the depth restriction could be bypassed if the child is a
netem.
3) Use the same approach as in 2, but add metadata in netem_skb_cb
to handle the netem_dequeue case and track a packet's involvement
in duplication. This is an overly complex approach, and Jamal
notes that the skb cb can be overwritten to circumvent this
safeguard.
4) Prevent the addition of a netem to a qdisc tree if its ancestral
path contains a netem. However, filters and actions can cause a
packet to change paths when re-enqueued to the root from netem
duplication, leading us to the current solution: prevent a
duplicating netem from inhabiting the same tree as other netems.
[1] https://lore.kernel.org/netdev/8DuRWwfqjoRDLDmBMlIfbrsZg9Gx50DHJc1ilxsEBNe2D6NMoigR_eIRIG0LOjMc3r10nUUZtArXx4oZBIdUfZQrwjcQhdinnMis_0G7VEk=@willsroot.io/
[2] https://lwn.net/Articles/719297/ |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: plug races between subflow fail and subflow creation
We have races similar to the one addressed by the previous patch between
subflow failing and additional subflow creation. They are just harder to
trigger.
The solution is similar. Use a separate flag to track the condition
'socket state prevent any additional subflow creation' protected by the
fallback lock.
The socket fallback makes such flag true, and also receiving or sending
an MP_FAIL option.
The field 'allow_infinite_fallback' is now always touched under the
relevant lock, we can drop the ONCE annotation on write. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: Delay put pmc->idev in mld_del_delrec()
pmc->idev is still used in ip6_mc_clear_src(), so as mld_clear_delrec()
does, the reference should be put after ip6_mc_clear_src() return. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (corsair-cpro) Validate the size of the received input buffer
Add buffer_recv_size to store the size of the received bytes.
Validate buffer_recv_size in send_usb_cmd(). |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Add down_write(trace_event_sem) when adding trace event
When a module is loaded, it adds trace events defined by the module. It
may also need to modify the modules trace printk formats to replace enum
names with their values.
If two modules are loaded at the same time, the adding of the event to the
ftrace_events list can corrupt the walking of the list in the code that is
modifying the printk format strings and crash the kernel.
The addition of the event should take the trace_event_sem for write while
it adds the new event.
Also add a lockdep_assert_held() on that semaphore in
__trace_add_event_dirs() as it iterates the list. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: nbpfaxi: Fix memory corruption in probe()
The nbpf->chan[] array is allocated earlier in the nbpf_probe() function
and it has "num_channels" elements. These three loops iterate one
element farther than they should and corrupt memory.
The changes to the second loop are more involved. In this case, we're
copying data from the irqbuf[] array into the nbpf->chan[] array. If
the data in irqbuf[i] is the error IRQ then we skip it, so the iterators
are not in sync. I added a check to ensure that we don't go beyond the
end of the irqbuf[] array. I'm pretty sure this can't happen, but it
seemed harmless to add a check.
On the other hand, after the loop has ended there is a check to ensure
that the "chan" iterator is where we expect it to be. In the original
code we went one element beyond the end of the array so the iterator
wasn't in the correct place and it would always return -EINVAL. However,
now it will always be in the correct place. I deleted the check since
we know the result. |
In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Fix unbalanced regulator disable in UTMI PHY mode
When transitioning from USB_ROLE_DEVICE to USB_ROLE_NONE, the code
assumed that the regulator should be disabled. However, if the regulator
is marked as always-on, regulator_is_enabled() continues to return true,
leading to an incorrect attempt to disable a regulator which is not
enabled.
This can result in warnings such as:
[ 250.155624] WARNING: CPU: 1 PID: 7326 at drivers/regulator/core.c:3004
_regulator_disable+0xe4/0x1a0
[ 250.155652] unbalanced disables for VIN_SYS_5V0
To fix this, we move the regulator control logic into
tegra186_xusb_padctl_id_override() function since it's directly related
to the ID override state. The regulator is now only disabled when the role
transitions from USB_ROLE_HOST to USB_ROLE_NONE, by checking the VBUS_ID
register. This ensures that regulator enable/disable operations are
properly balanced and only occur when actually transitioning to/from host
mode. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl812: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & board->irq_bits) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: aio_iiro_16: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject %p% format string in bprintf-like helpers
static const char fmt[] = "%p%";
bpf_trace_printk(fmt, sizeof(fmt));
The above BPF program isn't rejected and causes a kernel warning at
runtime:
Please remove unsupported %\x00 in format string
WARNING: CPU: 1 PID: 7244 at lib/vsprintf.c:2680 format_decode+0x49c/0x5d0
This happens because bpf_bprintf_prepare skips over the second %,
detected as punctuation, while processing %p. This patch fixes it by
not skipping over punctuation. %\x00 is then processed in the next
iteration and rejected. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in cifs_oplock_break
A race condition can occur in cifs_oplock_break() leading to a
use-after-free of the cinode structure when unmounting:
cifs_oplock_break()
_cifsFileInfo_put(cfile)
cifsFileInfo_put_final()
cifs_sb_deactive()
[last ref, start releasing sb]
kill_sb()
kill_anon_super()
generic_shutdown_super()
evict_inodes()
dispose_list()
evict()
destroy_inode()
call_rcu(&inode->i_rcu, i_callback)
spin_lock(&cinode->open_file_lock) <- OK
[later] i_callback()
cifs_free_inode()
kmem_cache_free(cinode)
spin_unlock(&cinode->open_file_lock) <- UAF
cifs_done_oplock_break(cinode) <- UAF
The issue occurs when umount has already released its reference to the
superblock. When _cifsFileInfo_put() calls cifs_sb_deactive(), this
releases the last reference, triggering the immediate cleanup of all
inodes under RCU. However, cifs_oplock_break() continues to access the
cinode after this point, resulting in use-after-free.
Fix this by holding an extra reference to the superblock during the
entire oplock break operation. This ensures that the superblock and
its inodes remain valid until the oplock break completes. |
In the Linux kernel, the following vulnerability has been resolved:
clone_private_mnt(): make sure that caller has CAP_SYS_ADMIN in the right userns
What we want is to verify there is that clone won't expose something
hidden by a mount we wouldn't be able to undo. "Wouldn't be able to undo"
may be a result of MNT_LOCKED on a child, but it may also come from
lacking admin rights in the userns of the namespace mount belongs to.
clone_private_mnt() checks the former, but not the latter.
There's a number of rather confusing CAP_SYS_ADMIN checks in various
userns during the mount, especially with the new mount API; they serve
different purposes and in case of clone_private_mnt() they usually,
but not always end up covering the missing check mentioned above. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |