| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The asn1buf_skiptail function in the ASN.1 decoder library for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows remote attackers to cause a denial of service (infinite loop) via a certain BER encoding. |
| Double free vulnerabilities in error handling code in krb524d for MIT Kerberos 5 (krb5) 1.2.8 and earlier may allow remote attackers to execute arbitrary code. |
| GSSFTP FTP daemon in Kerberos 5 1.1.x does not properly restrict access to some FTP commands, which allows remote attackers to cause a denial of service, and local users to gain root privileges. |
| Kerberos 4 KDC program does not properly check for null termination of AUTH_MSG_KDC_REQUEST requests, which allows remote attackers to cause a denial of service via a malformed request. |
| Kerberos 4 KDC program improperly frees memory twice (aka "double-free"), which allows remote attackers to cause a denial of service. |
| MIT Kerberos 5 (krb5) 1.3 through 1.4.1 Key Distribution Center (KDC) allows remote attackers to cause a denial of service (application crash) via a certain valid TCP connection that causes a free of unallocated memory. |
| Heap-based buffer overflow in the Key Distribution Center (KDC) in MIT Kerberos 5 (krb5) 1.4.1 and earlier allows remote attackers to cause a denial of service (application crash) and possibly execute arbitrary code via a certain valid TCP or UDP request. |
| Kerberos 5 (aka krb5) 1.21.2 contains a memory leak vulnerability in /krb5/src/kdc/ndr.c. |
| In MIT Kerberos 5 (aka krb5) before 1.21.3, an attacker can modify the plaintext Extra Count field of a confidential GSS krb5 wrap token, causing the unwrapped token to appear truncated to the application. |
| kdc/do_tgs_req.c in MIT Kerberos 5 (aka krb5) 1.21 before 1.21.2 has a double free that is reachable if an authenticated user can trigger an authorization-data handling failure. Incorrect data is copied from one ticket to another. |
| lib/kadm5/kadm_rpc_xdr.c in MIT Kerberos 5 (aka krb5) before 1.20.2 and 1.21.x before 1.21.1 frees an uninitialized pointer. A remote authenticated user can trigger a kadmind crash. This occurs because _xdr_kadm5_principal_ent_rec does not validate the relationship between n_key_data and the key_data array count. |
| telnetd in GNU Inetutils through 2.3, MIT krb5-appl through 1.0.3, and derivative works has a NULL pointer dereference via 0xff 0xf7 or 0xff 0xf8. In a typical installation, the telnetd application would crash but the telnet service would remain available through inetd. However, if the telnetd application has many crashes within a short time interval, the telnet service would become unavailable after inetd logs a "telnet/tcp server failing (looping), service terminated" error. NOTE: MIT krb5-appl is not supported upstream but is shipped by a few Linux distributions. The affected code was removed from the supported MIT Kerberos 5 (aka krb5) product many years ago, at version 1.8. |
| The Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.18.5 and 1.19.x before 1.19.3 has a NULL pointer dereference in kdc/do_tgs_req.c via a FAST inner body that lacks a server field. |
| ec_verify in kdc/kdc_preauth_ec.c in the Key Distribution Center (KDC) in MIT Kerberos 5 (aka krb5) before 1.18.4 and 1.19.x before 1.19.2 allows remote attackers to cause a NULL pointer dereference and daemon crash. This occurs because a return value is not properly managed in a certain situation. |
| MIT Kerberos 5 (aka krb5) before 1.17.2 and 1.18.x before 1.18.3 allows unbounded recursion via an ASN.1-encoded Kerberos message because the lib/krb5/asn.1/asn1_encode.c support for BER indefinite lengths lacks a recursion limit. |
| A flaw was found in, Fedora versions of krb5 from 1.16.1 to, including 1.17.x, in the way a Kerberos client could crash the KDC by sending one of the RFC 4556 "enctypes". A remote unauthenticated user could use this flaw to crash the KDC. |
| An authentication bypass flaw was found in the way krb5's certauth interface before 1.16.1 handled the validation of client certificates. A remote attacker able to communicate with the KDC could potentially use this flaw to impersonate arbitrary principals under rare and erroneous circumstances. |