CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix memory leak in mt7915_mcu_exit
Always purge mcu skb queues in mt7915_mcu_exit routine even if
mt7915_firmware_state fails. |
In the Linux kernel, the following vulnerability has been resolved:
soundwire: qcom: fix storing port config out-of-bounds
The 'qcom_swrm_ctrl->pconfig' has size of QCOM_SDW_MAX_PORTS (14),
however we index it starting from 1, not 0, to match real port numbers.
This can lead to writing port config past 'pconfig' bounds and
overwriting next member of 'qcom_swrm_ctrl' struct. Reported also by
smatch:
drivers/soundwire/qcom.c:1269 qcom_swrm_get_port_config() error: buffer overflow 'ctrl->pconfig' 14 <= 14 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Check that sock is valid before iscsi_set_param()
The validity of sock should be checked before assignment to avoid incorrect
values. Commit 57569c37f0ad ("scsi: iscsi: iscsi_tcp: Fix null-ptr-deref
while calling getpeername()") introduced this change which may lead to
inconsistent values of tcp_sw_conn->sendpage and conn->datadgst_en.
Fix the issue by moving the position of the assignment. |
In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Do not reset dql stats on NON_FATAL err
All ibmvnic resets, make a call to netdev_tx_reset_queue() when
re-opening the device. netdev_tx_reset_queue() resets the num_queued
and num_completed byte counters. These stats are used in Byte Queue
Limit (BQL) algorithms. The difference between these two stats tracks
the number of bytes currently sitting on the physical NIC. ibmvnic
increases the number of queued bytes though calls to
netdev_tx_sent_queue() in the drivers xmit function. When, VIOS reports
that it is done transmitting bytes, the ibmvnic device increases the
number of completed bytes through calls to netdev_tx_completed_queue().
It is important to note that the driver batches its transmit calls and
num_queued is increased every time that an skb is added to the next
batch, not necessarily when the batch is sent to VIOS for transmission.
Unlike other reset types, a NON FATAL reset will not flush the sub crq
tx buffers. Therefore, it is possible for the batched skb array to be
partially full. So if there is call to netdev_tx_reset_queue() when
re-opening the device, the value of num_queued (0) would not account
for the skb's that are currently batched. Eventually, when the batch
is sent to VIOS, the call to netdev_tx_completed_queue() would increase
num_completed to a value greater than the num_queued. This causes a
BUG_ON crash:
ibmvnic 30000002: Firmware reports error, cause: adapter problem.
Starting recovery...
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
ibmvnic 30000002: tx error 600
------------[ cut here ]------------
kernel BUG at lib/dynamic_queue_limits.c:27!
Oops: Exception in kernel mode, sig: 5
[....]
NIP dql_completed+0x28/0x1c0
LR ibmvnic_complete_tx.isra.0+0x23c/0x420 [ibmvnic]
Call Trace:
ibmvnic_complete_tx.isra.0+0x3f8/0x420 [ibmvnic] (unreliable)
ibmvnic_interrupt_tx+0x40/0x70 [ibmvnic]
__handle_irq_event_percpu+0x98/0x270
---[ end trace ]---
Therefore, do not reset the dql stats when performing a NON_FATAL reset. |
In the Linux kernel, the following vulnerability has been resolved:
hsr: Fix uninit-value access in fill_frame_info()
Syzbot reports the following uninit-value access problem.
=====================================================
BUG: KMSAN: uninit-value in fill_frame_info net/hsr/hsr_forward.c:601 [inline]
BUG: KMSAN: uninit-value in hsr_forward_skb+0x9bd/0x30f0 net/hsr/hsr_forward.c:616
fill_frame_info net/hsr/hsr_forward.c:601 [inline]
hsr_forward_skb+0x9bd/0x30f0 net/hsr/hsr_forward.c:616
hsr_dev_xmit+0x192/0x330 net/hsr/hsr_device.c:223
__netdev_start_xmit include/linux/netdevice.h:4889 [inline]
netdev_start_xmit include/linux/netdevice.h:4903 [inline]
xmit_one net/core/dev.c:3544 [inline]
dev_hard_start_xmit+0x247/0xa10 net/core/dev.c:3560
__dev_queue_xmit+0x34d0/0x52a0 net/core/dev.c:4340
dev_queue_xmit include/linux/netdevice.h:3082 [inline]
packet_xmit+0x9c/0x6b0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x8b1d/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
sock_sendmsg net/socket.c:753 [inline]
__sys_sendto+0x781/0xa30 net/socket.c:2176
__do_sys_sendto net/socket.c:2188 [inline]
__se_sys_sendto net/socket.c:2184 [inline]
__ia32_sys_sendto+0x11f/0x1c0 net/socket.c:2184
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523
kmalloc_reserve+0x148/0x470 net/core/skbuff.c:559
__alloc_skb+0x318/0x740 net/core/skbuff.c:644
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6299
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2794
packet_alloc_skb net/packet/af_packet.c:2936 [inline]
packet_snd net/packet/af_packet.c:3030 [inline]
packet_sendmsg+0x70e8/0x9f30 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:730 [inline]
sock_sendmsg net/socket.c:753 [inline]
__sys_sendto+0x781/0xa30 net/socket.c:2176
__do_sys_sendto net/socket.c:2188 [inline]
__se_sys_sendto net/socket.c:2184 [inline]
__ia32_sys_sendto+0x11f/0x1c0 net/socket.c:2184
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
It is because VLAN not yet supported in hsr driver. Return error
when protocol is ETH_P_8021Q in fill_frame_info() now to fix it. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring: wait interruptibly for request completions on exit
WHen the ring exits, cleanup is done and the final cancelation and
waiting on completions is done by io_ring_exit_work. That function is
invoked by kworker, which doesn't take any signals. Because of that, it
doesn't really matter if we wait for completions in TASK_INTERRUPTIBLE
or TASK_UNINTERRUPTIBLE state. However, it does matter to the hung task
detection checker!
Normally we expect cancelations and completions to happen rather
quickly. Some test cases, however, will exit the ring and park the
owning task stopped (eg via SIGSTOP). If the owning task needs to run
task_work to complete requests, then io_ring_exit_work won't make any
progress until the task is runnable again. Hence io_ring_exit_work can
trigger the hung task detection, which is particularly problematic if
panic-on-hung-task is enabled.
As the ring exit doesn't take signals to begin with, have it wait
interruptibly rather than uninterruptibly. io_uring has a separate
stuck-exit warning that triggers independently anyway, so we're not
really missing anything by making this switch. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix memory leak in rtw_usb_probe()
drivers/net/wireless/realtek/rtw88/usb.c:876 rtw_usb_probe()
warn: 'hw' from ieee80211_alloc_hw() not released on lines: 811
Fix this by modifying return to a goto statement. |
In the Linux kernel, the following vulnerability has been resolved:
HID: mcp-2221: prevent UAF in delayed work
If the device is plugged/unplugged without giving time for mcp_init_work()
to complete, we might kick in the devm free code path and thus have
unavailable struct mcp_2221 while in delayed work.
Canceling the delayed_work item is enough to solve the issue, because
cancel_delayed_work_sync will prevent the work item to requeue itself. |
In the Linux kernel, the following vulnerability has been resolved:
media: cx23885: Fix a null-ptr-deref bug in buffer_prepare() and buffer_finish()
When the driver calls cx23885_risc_buffer() to prepare the buffer, the
function call dma_alloc_coherent may fail, resulting in a empty buffer
risc->cpu. Later when we free the buffer or access the buffer, null ptr
deref is triggered.
This bug is similar to the following one:
https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71.
We believe the bug can be also dynamically triggered from user side.
Similarly, we fix this by checking the return value of cx23885_risc_buffer()
and the value of risc->cpu before buffer free. |
In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla4xxx: Add length check when parsing nlattrs
There are three places that qla4xxx parses nlattrs:
- qla4xxx_set_chap_entry()
- qla4xxx_iface_set_param()
- qla4xxx_sysfs_ddb_set_param()
and each of them directly converts the nlattr to specific pointer of
structure without length checking. This could be dangerous as those
attributes are not validated and a malformed nlattr (e.g., length 0) could
result in an OOB read that leaks heap dirty data.
Add the nla_len check before accessing the nlattr data and return EINVAL if
the length check fails. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: drop all currently held locks if deadlock happens
If vc4_hdmi_reset_link() returns -EDEADLK, it means that a deadlock
happened in the locking context. This situation should be addressed by
dropping all currently held locks and block until the contended lock
becomes available. Currently, vc4 is not dealing with the deadlock
properly, producing the following output when PROVE_LOCKING is enabled:
[ 825.612809] ------------[ cut here ]------------
[ 825.612852] WARNING: CPU: 1 PID: 116 at drivers/gpu/drm/drm_modeset_lock.c:276 drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.613458] Modules linked in: 8021q mrp garp stp llc
raspberrypi_cpufreq brcmfmac brcmutil crct10dif_ce hci_uart cfg80211
btqca btbcm bluetooth vc4 raspberrypi_hwmon snd_soc_hdmi_codec cec
clk_raspberrypi ecdh_generic drm_display_helper ecc rfkill
drm_dma_helper drm_kms_helper pwm_bcm2835 bcm2835_thermal bcm2835_rng
rng_core i2c_bcm2835 drm fuse ip_tables x_tables ipv6
[ 825.613735] CPU: 1 PID: 116 Comm: kworker/1:2 Tainted: G W 6.1.0-rc6-01399-g941aae326315 #3
[ 825.613759] Hardware name: Raspberry Pi 3 Model B Rev 1.2 (DT)
[ 825.613777] Workqueue: events output_poll_execute [drm_kms_helper]
[ 825.614038] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 825.614063] pc : drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.614603] lr : drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.614829] sp : ffff800008313bf0
[ 825.614844] x29: ffff800008313bf0 x28: ffffcd7778b8b000 x27: 0000000000000000
[ 825.614883] x26: 0000000000000001 x25: 0000000000000001 x24: ffff677cc35c2758
[ 825.614920] x23: ffffcd7707d01430 x22: ffffcd7707c3edc7 x21: 0000000000000001
[ 825.614958] x20: 0000000000000000 x19: ffff800008313c10 x18: 000000000000b6d3
[ 825.614995] x17: ffffcd777835e214 x16: ffffcd7777cef870 x15: fffff81000000000
[ 825.615033] x14: 0000000000000000 x13: 0000000000000099 x12: 0000000000000002
[ 825.615070] x11: 72917988020af800 x10: 72917988020af800 x9 : 72917988020af800
[ 825.615108] x8 : ffff677cc665e0a8 x7 : d00a8c180000110c x6 : ffffcd77774c0054
[ 825.615145] x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
[ 825.615181] x2 : ffff677cc55e1880 x1 : ffffcd7777cef8ec x0 : ffff800008313c10
[ 825.615219] Call trace:
[ 825.615232] drm_modeset_drop_locks+0x60/0x68 [drm]
[ 825.615773] drm_helper_probe_detect+0x120/0x1b4 [drm_kms_helper]
[ 825.616003] output_poll_execute+0xe4/0x224 [drm_kms_helper]
[ 825.616233] process_one_work+0x2b4/0x618
[ 825.616264] worker_thread+0x24c/0x464
[ 825.616288] kthread+0xec/0x110
[ 825.616310] ret_from_fork+0x10/0x20
[ 825.616335] irq event stamp: 7634
[ 825.616349] hardirqs last enabled at (7633): [<ffffcd777831ee90>] _raw_spin_unlock_irq+0x3c/0x78
[ 825.616384] hardirqs last disabled at (7634): [<ffffcd7778315a78>] __schedule+0x134/0x9f0
[ 825.616411] softirqs last enabled at (7630): [<ffffcd7707aacea0>] local_bh_enable+0x4/0x30 [ipv6]
[ 825.617019] softirqs last disabled at (7618): [<ffffcd7707aace70>] local_bh_disable+0x4/0x30 [ipv6]
[ 825.617586] ---[ end trace 0000000000000000 ]---
Therefore, deal with the deadlock as suggested by [1], using the
function drm_modeset_backoff().
[1] https://docs.kernel.org/gpu/drm-kms.html?highlight=kms#kms-locking |
In the Linux kernel, the following vulnerability has been resolved:
HID: multitouch: Correct devm device reference for hidinput input_dev name
Reference the HID device rather than the input device for the devm
allocation of the input_dev name. Referencing the input_dev would lead to a
use-after-free when the input_dev was unregistered and subsequently fires a
uevent that depends on the name. At the point of firing the uevent, the
name would be freed by devres management.
Use devm_kasprintf to simplify the logic for allocating memory and
formatting the input_dev name string. |
In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: free iio for atombios when driver shutdown
Fix below kmemleak when unload radeon driver:
unreferenced object 0xffff9f8608ede200 (size 512):
comm "systemd-udevd", pid 326, jiffies 4294682822 (age 716.338s)
hex dump (first 32 bytes):
00 00 00 00 c4 aa ec aa 14 ab 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000062fadebe>] kmem_cache_alloc_trace+0x2f1/0x500
[<00000000b6883cea>] atom_parse+0x117/0x230 [radeon]
[<00000000158c23fd>] radeon_atombios_init+0xab/0x170 [radeon]
[<00000000683f672e>] si_init+0x57/0x750 [radeon]
[<00000000566cc31f>] radeon_device_init+0x559/0x9c0 [radeon]
[<0000000046efabb3>] radeon_driver_load_kms+0xc1/0x1a0 [radeon]
[<00000000b5155064>] drm_dev_register+0xdd/0x1d0
[<0000000045fec835>] radeon_pci_probe+0xbd/0x100 [radeon]
[<00000000e69ecca3>] pci_device_probe+0xe1/0x160
[<0000000019484b76>] really_probe.part.0+0xc1/0x2c0
[<000000003f2649da>] __driver_probe_device+0x96/0x130
[<00000000231c5bb1>] driver_probe_device+0x24/0xf0
[<0000000000a42377>] __driver_attach+0x77/0x190
[<00000000d7574da6>] bus_for_each_dev+0x7f/0xd0
[<00000000633166d2>] driver_attach+0x1e/0x30
[<00000000313b05b8>] bus_add_driver+0x12c/0x1e0
iio was allocated in atom_index_iio() called by atom_parse(),
but it doesn't got released when the dirver is shutdown.
Fix this kmemleak by free it in radeon_atombios_fini(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: fix potential race condition between napi_init and napi_enable
A race condition can happen if netdev is registered, but NAPI isn't
initialized yet, and meanwhile user space starts the netdev that will
enable NAPI. Then, it hits BUG_ON():
kernel BUG at net/core/dev.c:6423!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 417 Comm: iwd Not tainted 6.2.7-slab-dirty #3 eb0f5a8a9d91
Hardware name: LENOVO 21DL/LNVNB161216, BIOS JPCN20WW(V1.06) 09/20/2022
RIP: 0010:napi_enable+0x3f/0x50
Code: 48 89 c2 48 83 e2 f6 f6 81 89 08 00 00 02 74 0d 48 83 ...
RSP: 0018:ffffada1414f3548 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffa01425802080 RCX: 0000000000000000
RDX: 00000000000002ff RSI: ffffada14e50c614 RDI: ffffa01425808dc0
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000100 R12: ffffa01425808f58
R13: 0000000000000000 R14: ffffa01423498940 R15: 0000000000000001
FS: 00007f5577c0a740(0000) GS:ffffa0169fc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5577a19972 CR3: 0000000125a7a000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
rtw89_pci_ops_start+0x1c/0x70 [rtw89_pci 6cbc75429515c181cbc386478d5cfb32ffc5a0f8]
rtw89_core_start+0xbe/0x160 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22]
rtw89_ops_start+0x26/0x40 [rtw89_core fe07ecb874820b6d778370d4acb6ef8a37847f22]
drv_start+0x42/0x100 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
ieee80211_do_open+0x311/0x7d0 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
ieee80211_open+0x6a/0x90 [mac80211 c07fa22af8c3cf3f7d7ab3884ca990784d72e2d2]
__dev_open+0xe0/0x180
__dev_change_flags+0x1da/0x250
dev_change_flags+0x26/0x70
do_setlink+0x37c/0x12c0
? ep_poll_callback+0x246/0x290
? __nla_validate_parse+0x61/0xd00
? __wake_up_common_lock+0x8f/0xd0
To fix this, follow Jonas' suggestion to switch the order of these
functions and move register netdev to be the last step of PCI probe.
Also, correct the error handling of rtw89_core_register_hw(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix potential NULL pointer dereference
Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate
pointer before dereferencing the pointer. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel. |
In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: Fix potential memleak in dasd_eckd_init()
`dasd_reserve_req` is allocated before `dasd_vol_info_req`, and it
also needs to be freed before the error returns, just like the other
cases in this function. |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: imxfb: Removed unneeded release_mem_region
Remove unnecessary release_mem_region from the error path to prevent
mem region from being released twice, which could avoid resource leak
or other unexpected issues. |
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix potential memory leak in rtw_init_drv_sw()
In rtw_init_drv_sw(), there are various init functions are called to
populate the padapter structure and some checks for their return value.
However, except for the first one error path, the other five error paths
do not properly release the previous allocated resources, which leads to
various memory leaks.
This patch fixes them and keeps the success and error separate.
Note that these changes keep the form of `rtw_init_drv_sw()` in
"drivers/staging/r8188eu/os_dep/os_intfs.c". As there is no proper device
to test with, no runtime testing was performed. |