CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: x86: s2idle: Catch multiple ACPI_TYPE_PACKAGE objects
If a badly constructed firmware includes multiple `ACPI_TYPE_PACKAGE`
objects while evaluating the AMD LPS0 _DSM, there will be a memory
leak. Explicitly guard against this. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix out-of-bounds access in ipv6_find_tlv()
optlen is fetched without checking whether there is more than one byte to parse.
It can lead to out-of-bounds access.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
HID: amd_sfh: Fix for shift-out-of-bounds
Shift operation of 'exp' and 'shift' variables exceeds the maximum number
of shift values in the u32 range leading to UBSAN shift-out-of-bounds.
...
[ 6.120512] UBSAN: shift-out-of-bounds in drivers/hid/amd-sfh-hid/sfh1_1/amd_sfh_desc.c:149:50
[ 6.120598] shift exponent 104 is too large for 64-bit type 'long unsigned int'
[ 6.120659] CPU: 4 PID: 96 Comm: kworker/4:1 Not tainted 6.4.0amd_1-next-20230519-dirty #10
[ 6.120665] Hardware name: AMD Birman-PHX/Birman-PHX, BIOS SFH_with_HPD_SEN.FD 04/05/2023
[ 6.120667] Workqueue: events amd_sfh_work_buffer [amd_sfh]
[ 6.120687] Call Trace:
[ 6.120690] <TASK>
[ 6.120694] dump_stack_lvl+0x48/0x70
[ 6.120704] dump_stack+0x10/0x20
[ 6.120707] ubsan_epilogue+0x9/0x40
[ 6.120716] __ubsan_handle_shift_out_of_bounds+0x10f/0x170
[ 6.120720] ? psi_group_change+0x25f/0x4b0
[ 6.120729] float_to_int.cold+0x18/0xba [amd_sfh]
[ 6.120739] get_input_rep+0x57/0x340 [amd_sfh]
[ 6.120748] ? __schedule+0xba7/0x1b60
[ 6.120756] ? __pfx_get_input_rep+0x10/0x10 [amd_sfh]
[ 6.120764] amd_sfh_work_buffer+0x91/0x180 [amd_sfh]
[ 6.120772] process_one_work+0x229/0x430
[ 6.120780] worker_thread+0x4a/0x3c0
[ 6.120784] ? __pfx_worker_thread+0x10/0x10
[ 6.120788] kthread+0xf7/0x130
[ 6.120792] ? __pfx_kthread+0x10/0x10
[ 6.120795] ret_from_fork+0x29/0x50
[ 6.120804] </TASK>
...
Fix this by adding the condition to validate shift ranges. |
In the Linux kernel, the following vulnerability has been resolved:
s390/crypto: use vector instructions only if available for ChaCha20
Commit 349d03ffd5f6 ("crypto: s390 - add crypto library interface for
ChaCha20") added a library interface to the s390 specific ChaCha20
implementation. However no check was added to verify if the required
facilities are installed before branching into the assembler code.
If compiled into the kernel, this will lead to the following crash,
if vector instructions are not available:
data exception: 0007 ilc:3 [#1] SMP
Modules linked in:
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.3.0-rc7+ #11
Hardware name: IBM 3931 A01 704 (KVM/Linux)
Krnl PSW : 0704e00180000000 000000001857277a (chacha20_vx+0x32/0x818)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000037f0000000a ffffffffffffff60 000000008184b000 0000000019f5c8e6
0000000000000109 0000037fffb13c58 0000037fffb13c78 0000000019bb1780
0000037fffb13c58 0000000019f5c8e6 000000008184b000 0000000000000109
00000000802d8000 0000000000000109 0000000018571ebc 0000037fffb13718
Krnl Code: 000000001857276a: c07000b1f80b larl %r7,0000000019bb1780
0000000018572770: a708000a lhi %r0,10
#0000000018572774: e78950000c36 vlm %v24,%v25,0(%r5),0
>000000001857277a: e7a060000806 vl %v26,0(%r6),0
0000000018572780: e7bf70004c36 vlm %v27,%v31,0(%r7),4
0000000018572786: e70b00000456 vlr %v0,%v27
000000001857278c: e71800000456 vlr %v1,%v24
0000000018572792: e74b00000456 vlr %v4,%v27
Call Trace:
[<000000001857277a>] chacha20_vx+0x32/0x818
Last Breaking-Event-Address:
[<0000000018571eb6>] chacha20_crypt_s390.constprop.0+0x6e/0xd8
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
Fix this by adding a missing MACHINE_HAS_VX check.
[agordeev@linux.ibm.com: remove duplicates in commit message] |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: deactivate anonymous set from preparation phase
[ backport for 4.14 of c1592a89942e9678f7d9c8030efa777c0d57edab ]
Toggle deleted anonymous sets as inactive in the next generation, so
users cannot perform any update on it. Clear the generation bitmask
in case the transaction is aborted.
The following KASAN splat shows a set element deletion for a bound
anonymous set that has been already removed in the same transaction.
[ 64.921510] ==================================================================
[ 64.923123] BUG: KASAN: wild-memory-access in nf_tables_commit+0xa24/0x1490 [nf_tables]
[ 64.924745] Write of size 8 at addr dead000000000122 by task test/890
[ 64.927903] CPU: 3 PID: 890 Comm: test Not tainted 6.3.0+ #253
[ 64.931120] Call Trace:
[ 64.932699] <TASK>
[ 64.934292] dump_stack_lvl+0x33/0x50
[ 64.935908] ? nf_tables_commit+0xa24/0x1490 [nf_tables]
[ 64.937551] kasan_report+0xda/0x120
[ 64.939186] ? nf_tables_commit+0xa24/0x1490 [nf_tables]
[ 64.940814] nf_tables_commit+0xa24/0x1490 [nf_tables]
[ 64.942452] ? __kasan_slab_alloc+0x2d/0x60
[ 64.944070] ? nf_tables_setelem_notify+0x190/0x190 [nf_tables]
[ 64.945710] ? kasan_set_track+0x21/0x30
[ 64.947323] nfnetlink_rcv_batch+0x709/0xd90 [nfnetlink]
[ 64.948898] ? nfnetlink_rcv_msg+0x480/0x480 [nfnetlink] |
In the Linux kernel, the following vulnerability has been resolved:
media: max9286: Fix memleak in max9286_v4l2_register()
There is a kmemleak when testing the media/i2c/max9286.c with bpf mock
device:
kmemleak: 5 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
unreferenced object 0xffff88810defc400 (size 256):
comm "python3", pid 278, jiffies 4294737563 (age 31.978s)
hex dump (first 32 bytes):
28 06 a7 0a 81 88 ff ff 00 fe 22 12 81 88 ff ff (.........".....
10 c4 ef 0d 81 88 ff ff 10 c4 ef 0d 81 88 ff ff ................
backtrace:
[<00000000191de6a7>] __kmalloc_node+0x44/0x1b0
[<000000002f4912b7>] kvmalloc_node+0x34/0x180
[<0000000057dc4cae>] v4l2_ctrl_new+0x325/0x10f0 [videodev]
[<0000000026030272>] v4l2_ctrl_new_std+0x16f/0x210 [videodev]
[<00000000f0d9ea2f>] max9286_probe+0x76e/0xbff [max9286]
[<00000000ea8f6455>] i2c_device_probe+0x28d/0x680
[<0000000087529af3>] really_probe+0x17c/0x3f0
[<00000000b08be526>] __driver_probe_device+0xe3/0x170
[<000000004382edea>] driver_probe_device+0x49/0x120
[<000000007bde528a>] __device_attach_driver+0xf7/0x150
[<000000009f9c6ab4>] bus_for_each_drv+0x114/0x180
[<00000000c8aaf588>] __device_attach+0x1e5/0x2d0
[<0000000041cc06b9>] bus_probe_device+0x126/0x140
[<000000002309860d>] device_add+0x810/0x1130
[<000000002827bf98>] i2c_new_client_device+0x359/0x4f0
[<00000000593bdc85>] of_i2c_register_device+0xf1/0x110
max9286_v4l2_register() calls v4l2_ctrl_new_std(), but won't free the
created v412_ctrl when fwnode_graph_get_endpoint_by_id() failed, which
causes the memleak. Call v4l2_ctrl_handler_free() to free the v412_ctrl. |
In the Linux kernel, the following vulnerability has been resolved:
riscv: move memblock_allow_resize() after linear mapping is ready
The initial memblock metadata is accessed from kernel image mapping. The
regions arrays need to "reallocated" from memblock and accessed through
linear mapping to cover more memblock regions. So the resizing should
not be allowed until linear mapping is ready. Note that there are
memblock allocations when building linear mapping.
This patch is similar to 24cc61d8cb5a ("arm64: memblock: don't permit
memblock resizing until linear mapping is up").
In following log, many memblock regions are reserved before
create_linear_mapping_page_table(). And then it triggered reallocation
of memblock.reserved.regions and memcpy the old array in kernel image
mapping to the new array in linear mapping which caused a page fault.
[ 0.000000] memblock_reserve: [0x00000000bf01f000-0x00000000bf01ffff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf021000-0x00000000bf021fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf023000-0x00000000bf023fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf025000-0x00000000bf025fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf027000-0x00000000bf027fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf029000-0x00000000bf029fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf02b000-0x00000000bf02bfff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf02d000-0x00000000bf02dfff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf02f000-0x00000000bf02ffff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] memblock_reserve: [0x00000000bf030000-0x00000000bf030fff] early_init_fdt_scan_reserved_mem+0x28c/0x2c6
[ 0.000000] OF: reserved mem: 0x0000000080000000..0x000000008007ffff (512 KiB) map non-reusable mmode_resv0@80000000
[ 0.000000] memblock_reserve: [0x00000000bf000000-0x00000000bf001fed] paging_init+0x19a/0x5ae
[ 0.000000] memblock_phys_alloc_range: 4096 bytes align=0x1000 from=0x0000000000000000 max_addr=0x0000000000000000 alloc_pmd_fixmap+0x14/0x1c
[ 0.000000] memblock_reserve: [0x000000017ffff000-0x000000017fffffff] memblock_alloc_range_nid+0xb8/0x128
[ 0.000000] memblock: reserved is doubled to 256 at [0x000000017fffd000-0x000000017fffe7ff]
[ 0.000000] Unable to handle kernel paging request at virtual address ff600000ffffd000
[ 0.000000] Oops [#1]
[ 0.000000] Modules linked in:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.4.0-rc1-00011-g99a670b2069c #66
[ 0.000000] Hardware name: riscv-virtio,qemu (DT)
[ 0.000000] epc : __memcpy+0x60/0xf8
[ 0.000000] ra : memblock_double_array+0x192/0x248
[ 0.000000] epc : ffffffff8081d214 ra : ffffffff80a3dfc0 sp : ffffffff81403bd0
[ 0.000000] gp : ffffffff814fbb38 tp : ffffffff8140dac0 t0 : 0000000001600000
[ 0.000000] t1 : 0000000000000000 t2 : 000000008f001000 s0 : ffffffff81403c60
[ 0.000000] s1 : ffffffff80c0bc98 a0 : ff600000ffffd000 a1 : ffffffff80c0bcd8
[ 0.000000] a2 : 0000000000000c00 a3 : ffffffff80c0c8d8 a4 : 0000000080000000
[ 0.000000] a5 : 0000000000080000 a6 : 0000000000000000 a7 : 0000000080200000
[ 0.000000] s2 : ff600000ffffd000 s3 : 0000000000002000 s4 : 0000000000000c00
[ 0.000000] s5 : ffffffff80c0bc60 s6 : ffffffff80c0bcc8 s7 : 0000000000000000
[ 0.000000] s8 : ffffffff814fd0a8 s9 : 000000017fffe7ff s10: 0000000000000000
[ 0.000000] s11: 0000000000001000 t3 : 0000000000001000 t4 : 0000000000000000
[ 0.000000] t5 : 000000008f003000 t6 : ff600000ffffd000
[ 0.000000] status: 0000000200000100 badaddr: ff600000ffffd000 cause: 000000000000000f
[ 0.000000] [<fff
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
xsk: fix refcount underflow in error path
Fix a refcount underflow problem reported by syzbot that can happen
when a system is running out of memory. If xp_alloc_tx_descs() fails,
and it can only fail due to not having enough memory, then the error
path is triggered. In this error path, the refcount of the pool is
decremented as it has incremented before. However, the reference to
the pool in the socket was not nulled. This means that when the socket
is closed later, the socket teardown logic will think that there is a
pool attached to the socket and try to decrease the refcount again,
leading to a refcount underflow.
I chose this fix as it involved adding just a single line. Another
option would have been to move xp_get_pool() and the assignment of
xs->pool to after the if-statement and using xs_umem->pool instead of
xs->pool in the whole if-statement resulting in somewhat simpler code,
but this would have led to much more churn in the code base perhaps
making it harder to backport. |
In the Linux kernel, the following vulnerability has been resolved:
nvdimm: Fix memleak of pmu attr_groups in unregister_nvdimm_pmu()
Memory pointed by 'nd_pmu->pmu.attr_groups' is allocated in function
'register_nvdimm_pmu' and is lost after 'kfree(nd_pmu)' call in function
'unregister_nvdimm_pmu'. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix memory leak in qla2x00_probe_one()
There is a memory leak reported by kmemleak:
unreferenced object 0xffffc900003f0000 (size 12288):
comm "modprobe", pid 19117, jiffies 4299751452 (age 42490.264s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000629261a8>] __vmalloc_node_range+0xe56/0x1110
[<0000000001906886>] __vmalloc_node+0xbd/0x150
[<000000005bb4dc34>] vmalloc+0x25/0x30
[<00000000a2dc1194>] qla2x00_create_host+0x7a0/0xe30 [qla2xxx]
[<0000000062b14b47>] qla2x00_probe_one+0x2eb8/0xd160 [qla2xxx]
[<00000000641ccc04>] local_pci_probe+0xeb/0x1a0
The root cause is traced to an error-handling path in qla2x00_probe_one()
when the adapter "base_vha" initialize failed. The fab_scan_rp "scan.l" is
used to record the port information and it is allocated in
qla2x00_create_host(). However, it is not released in the error handling
path "probe_failed".
Fix this by freeing the memory of "scan.l" when an error occurs in the
adapter initialization process. |
In the Linux kernel, the following vulnerability has been resolved:
riscv: ftrace: Fixup panic by disabling preemption
In RISCV, we must use an AUIPC + JALR pair to encode an immediate,
forming a jump that jumps to an address over 4K. This may cause errors
if we want to enable kernel preemption and remove dependency from
patching code with stop_machine(). For example, if a task was switched
out on auipc. And, if we changed the ftrace function before it was
switched back, then it would jump to an address that has updated 11:0
bits mixing with previous XLEN:12 part.
p: patched area performed by dynamic ftrace
ftrace_prologue:
p| REG_S ra, -SZREG(sp)
p| auipc ra, 0x? ------------> preempted
...
change ftrace function
...
p| jalr -?(ra) <------------- switched back
p| REG_L ra, -SZREG(sp)
func:
xxx
ret |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix the memory leak in raw_gadget driver
Currently, increasing raw_dev->count happens before invoke the
raw_queue_event(), if the raw_queue_event() return error, invoke
raw_release() will not trigger the dev_free() to be called.
[ 268.905865][ T5067] raw-gadget.0 gadget.0: failed to queue event
[ 268.912053][ T5067] udc dummy_udc.0: failed to start USB Raw Gadget: -12
[ 268.918885][ T5067] raw-gadget.0: probe of gadget.0 failed with error -12
[ 268.925956][ T5067] UDC core: USB Raw Gadget: couldn't find an available UDC or it's busy
[ 268.934657][ T5067] misc raw-gadget: fail, usb_gadget_register_driver returned -16
BUG: memory leak
[<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076
[<ffffffff8347eb55>] kmalloc include/linux/slab.h:582 [inline]
[<ffffffff8347eb55>] kzalloc include/linux/slab.h:703 [inline]
[<ffffffff8347eb55>] dev_new drivers/usb/gadget/legacy/raw_gadget.c:191 [inline]
[<ffffffff8347eb55>] raw_open+0x45/0x110 drivers/usb/gadget/legacy/raw_gadget.c:385
[<ffffffff827d1d09>] misc_open+0x1a9/0x1f0 drivers/char/misc.c:165
[<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076
[<ffffffff8347cd2f>] kmalloc include/linux/slab.h:582 [inline]
[<ffffffff8347cd2f>] raw_ioctl_init+0xdf/0x410 drivers/usb/gadget/legacy/raw_gadget.c:460
[<ffffffff8347dfe9>] raw_ioctl+0x5f9/0x1120 drivers/usb/gadget/legacy/raw_gadget.c:1250
[<ffffffff81685173>] vfs_ioctl fs/ioctl.c:51 [inline]
[<ffffffff8154bf94>] kmalloc_trace+0x24/0x90 mm/slab_common.c:1076
[<ffffffff833ecc6a>] kmalloc include/linux/slab.h:582 [inline]
[<ffffffff833ecc6a>] kzalloc include/linux/slab.h:703 [inline]
[<ffffffff833ecc6a>] dummy_alloc_request+0x5a/0xe0 drivers/usb/gadget/udc/dummy_hcd.c:665
[<ffffffff833e9132>] usb_ep_alloc_request+0x22/0xd0 drivers/usb/gadget/udc/core.c:196
[<ffffffff8347f13d>] gadget_bind+0x6d/0x370 drivers/usb/gadget/legacy/raw_gadget.c:292
This commit therefore invoke kref_get() under the condition that
raw_queue_event() return success. |
In the Linux kernel, the following vulnerability has been resolved:
regulator: core: Prevent integer underflow
By using a ratio of delay to poll_enabled_time that is not integer
time_remaining underflows and does not exit the loop as expected.
As delay could be derived from DT and poll_enabled_time is defined
in the driver this can easily happen.
Use a signed iterator to make sure that the loop exits once
the remaining time is negative. |
In the Linux kernel, the following vulnerability has been resolved:
hfs: fix OOB Read in __hfs_brec_find
Syzbot reported a OOB read bug:
==================================================================
BUG: KASAN: slab-out-of-bounds in hfs_strcmp+0x117/0x190
fs/hfs/string.c:84
Read of size 1 at addr ffff88807eb62c4e by task kworker/u4:1/11
CPU: 1 PID: 11 Comm: kworker/u4:1 Not tainted
6.1.0-rc6-syzkaller-00308-g644e9524388a #0
Workqueue: writeback wb_workfn (flush-7:0)
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
print_address_description+0x74/0x340 mm/kasan/report.c:284
print_report+0x107/0x1f0 mm/kasan/report.c:395
kasan_report+0xcd/0x100 mm/kasan/report.c:495
hfs_strcmp+0x117/0x190 fs/hfs/string.c:84
__hfs_brec_find+0x213/0x5c0 fs/hfs/bfind.c:75
hfs_brec_find+0x276/0x520 fs/hfs/bfind.c:138
hfs_write_inode+0x34c/0xb40 fs/hfs/inode.c:462
write_inode fs/fs-writeback.c:1440 [inline]
If the input inode of hfs_write_inode() is incorrect:
struct inode
struct hfs_inode_info
struct hfs_cat_key
struct hfs_name
u8 len # len is greater than HFS_NAMELEN(31) which is the
maximum length of an HFS filename
OOB read occurred:
hfs_write_inode()
hfs_brec_find()
__hfs_brec_find()
hfs_cat_keycmp()
hfs_strcmp() # OOB read occurred due to len is too large
Fix this by adding a Check on len in hfs_write_inode() before calling
hfs_brec_find(). |
In the Linux kernel, the following vulnerability has been resolved:
class: fix possible memory leak in __class_register()
If class_add_groups() returns error, the 'cp->subsys' need be
unregister, and the 'cp' need be freed.
We can not call kset_unregister() here, because the 'cls' will
be freed in callback function class_release() and it's also
freed in caller's error path, it will cause double free.
So fix this by calling kobject_del() and kfree_const(name) to
cleanup kobject. Besides, call kfree() to free the 'cp'.
Fault injection test can trigger this:
unreferenced object 0xffff888102fa8190 (size 8):
comm "modprobe", pid 502, jiffies 4294906074 (age 49.296s)
hex dump (first 8 bytes):
70 6b 74 63 64 76 64 00 pktcdvd.
backtrace:
[<00000000e7c7703d>] __kmalloc_track_caller+0x1ae/0x320
[<000000005e4d70bc>] kstrdup+0x3a/0x70
[<00000000c2e5e85a>] kstrdup_const+0x68/0x80
[<000000000049a8c7>] kvasprintf_const+0x10b/0x190
[<0000000029123163>] kobject_set_name_vargs+0x56/0x150
[<00000000747219c9>] kobject_set_name+0xab/0xe0
[<0000000005f1ea4e>] __class_register+0x15c/0x49a
unreferenced object 0xffff888037274000 (size 1024):
comm "modprobe", pid 502, jiffies 4294906074 (age 49.296s)
hex dump (first 32 bytes):
00 40 27 37 80 88 ff ff 00 40 27 37 80 88 ff ff .@'7.....@'7....
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
backtrace:
[<00000000151f9600>] kmem_cache_alloc_trace+0x17c/0x2f0
[<00000000ecf3dd95>] __class_register+0x86/0x49a |
In the Linux kernel, the following vulnerability has been resolved:
ima: Fix memory leak in __ima_inode_hash()
Commit f3cc6b25dcc5 ("ima: always measure and audit files in policy") lets
measurement or audit happen even if the file digest cannot be calculated.
As a result, iint->ima_hash could have been allocated despite
ima_collect_measurement() returning an error.
Since ima_hash belongs to a temporary inode metadata structure, declared
at the beginning of __ima_inode_hash(), just add a kfree() call if
ima_collect_measurement() returns an error different from -ENOMEM (in that
case, ima_hash should not have been allocated). |
In the Linux kernel, the following vulnerability has been resolved:
serial: pch: Fix PCI device refcount leak in pch_request_dma()
As comment of pci_get_slot() says, it returns a pci_device with its
refcount increased. The caller must decrement the reference count by
calling pci_dev_put().
Since 'dma_dev' is only used to filter the channel in filter(), we can
call pci_dev_put() before exiting from pch_request_dma(). Add the
missing pci_dev_put() for the normal and error path. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7915: fix mt7915_rate_txpower_get() resource leaks
Coverity message: variable "buf" going out of scope leaks the storage.
Addresses-Coverity-ID: 1527799 ("Resource leaks") |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: call __btrfs_remove_free_space_cache_locked on cache load failure
Now that lockdep is staying enabled through our entire CI runs I started
seeing the following stack in generic/475
------------[ cut here ]------------
WARNING: CPU: 1 PID: 2171864 at fs/btrfs/discard.c:604 btrfs_discard_update_discardable+0x98/0xb0
CPU: 1 PID: 2171864 Comm: kworker/u4:0 Not tainted 5.19.0-rc8+ #789
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: btrfs-cache btrfs_work_helper
RIP: 0010:btrfs_discard_update_discardable+0x98/0xb0
RSP: 0018:ffffb857c2f7bad0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8c85c605c200 RCX: 0000000000000001
RDX: 0000000000000000 RSI: ffffffff86807c5b RDI: ffffffff868a831e
RBP: ffff8c85c4c54000 R08: 0000000000000000 R09: 0000000000000000
R10: ffff8c85c66932f0 R11: 0000000000000001 R12: ffff8c85c3899010
R13: ffff8c85d5be4f40 R14: ffff8c85c4c54000 R15: ffff8c86114bfa80
FS: 0000000000000000(0000) GS:ffff8c863bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2e7f168160 CR3: 000000010289a004 CR4: 0000000000370ee0
Call Trace:
__btrfs_remove_free_space_cache+0x27/0x30
load_free_space_cache+0xad2/0xaf0
caching_thread+0x40b/0x650
? lock_release+0x137/0x2d0
btrfs_work_helper+0xf2/0x3e0
? lock_is_held_type+0xe2/0x140
process_one_work+0x271/0x590
? process_one_work+0x590/0x590
worker_thread+0x52/0x3b0
? process_one_work+0x590/0x590
kthread+0xf0/0x120
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
This is the code
ctl = block_group->free_space_ctl;
discard_ctl = &block_group->fs_info->discard_ctl;
lockdep_assert_held(&ctl->tree_lock);
We have a temporary free space ctl for loading the free space cache in
order to avoid having allocations happening while we're loading the
cache. When we hit an error we free it all up, however this also calls
btrfs_discard_update_discardable, which requires
block_group->free_space_ctl->tree_lock to be held. However this is our
temporary ctl so this lock isn't held. Fix this by calling
__btrfs_remove_free_space_cache_locked instead so that we only clean up
the entries and do not mess with the discardable stats. |
In the Linux kernel, the following vulnerability has been resolved:
xfrm: Update ipcomp_scratches with NULL when freed
Currently if ipcomp_alloc_scratches() fails to allocate memory
ipcomp_scratches holds obsolete address. So when we try to free the
percpu scratches using ipcomp_free_scratches() it tries to vfree non
existent vm area. Described below:
static void * __percpu *ipcomp_alloc_scratches(void)
{
...
scratches = alloc_percpu(void *);
if (!scratches)
return NULL;
ipcomp_scratches does not know about this allocation failure.
Therefore holding the old obsolete address.
...
}
So when we free,
static void ipcomp_free_scratches(void)
{
...
scratches = ipcomp_scratches;
Assigning obsolete address from ipcomp_scratches
if (!scratches)
return;
for_each_possible_cpu(i)
vfree(*per_cpu_ptr(scratches, i));
Trying to free non existent page, causing warning: trying to vfree
existent vm area.
...
}
Fix this breakage by updating ipcomp_scrtches with NULL when scratches
is freed |