| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: slimbus: fix bus_context pointer in regmap init calls
Commit 4e65bda8273c ("ASoC: wcd934x: fix error handling in
wcd934x_codec_parse_data()") revealed the problem in the slimbus regmap.
That commit breaks audio playback, for instance, on sdm845 Thundercomm
Dragonboard 845c board:
Unable to handle kernel paging request at virtual address ffff8000847cbad4
...
CPU: 5 UID: 0 PID: 776 Comm: aplay Not tainted 6.18.0-rc1-00028-g7ea30958b305 #11 PREEMPT
Hardware name: Thundercomm Dragonboard 845c (DT)
...
Call trace:
slim_xfer_msg+0x24/0x1ac [slimbus] (P)
slim_read+0x48/0x74 [slimbus]
regmap_slimbus_read+0x18/0x24 [regmap_slimbus]
_regmap_raw_read+0xe8/0x174
_regmap_bus_read+0x44/0x80
_regmap_read+0x60/0xd8
_regmap_update_bits+0xf4/0x140
_regmap_select_page+0xa8/0x124
_regmap_raw_write_impl+0x3b8/0x65c
_regmap_bus_raw_write+0x60/0x80
_regmap_write+0x58/0xc0
regmap_write+0x4c/0x80
wcd934x_hw_params+0x494/0x8b8 [snd_soc_wcd934x]
snd_soc_dai_hw_params+0x3c/0x7c [snd_soc_core]
__soc_pcm_hw_params+0x22c/0x634 [snd_soc_core]
dpcm_be_dai_hw_params+0x1d4/0x38c [snd_soc_core]
dpcm_fe_dai_hw_params+0x9c/0x17c [snd_soc_core]
snd_pcm_hw_params+0x124/0x464 [snd_pcm]
snd_pcm_common_ioctl+0x110c/0x1820 [snd_pcm]
snd_pcm_ioctl+0x34/0x4c [snd_pcm]
__arm64_sys_ioctl+0xac/0x104
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xec
el0t_64_sync_handler+0xa0/0xf0
el0t_64_sync+0x198/0x19c
The __devm_regmap_init_slimbus() started to be used instead of
__regmap_init_slimbus() after the commit mentioned above and turns out
the incorrect bus_context pointer (3rd argument) was used in
__devm_regmap_init_slimbus(). It should be just "slimbus" (which is equal
to &slimbus->dev). Correct it. The wcd934x codec seems to be the only or
the first user of devm_regmap_init_slimbus() but we should fix it till
the point where __devm_regmap_init_slimbus() was introduced therefore
two "Fixes" tags.
While at this, also correct the same argument in __regmap_init_slimbus(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix device use-after-free on unbind
A recent change fixed device reference leaks when looking up drm
platform device driver data during bind() but failed to remove a partial
fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix
kobject put for component sub-drivers").
This results in a reference imbalance on component bind() failures and
on unbind() which could lead to a user-after-free.
Make sure to only drop the references after retrieving the driver data
by effectively reverting the previous partial fix.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Fix epfile null pointer access after ep enable.
A race condition occurs when ffs_func_eps_enable() runs concurrently
with ffs_data_reset(). The ffs_data_clear() called in ffs_data_reset()
sets ffs->epfiles to NULL before resetting ffs->eps_count to 0, leading
to a NULL pointer dereference when accessing epfile->ep in
ffs_func_eps_enable() after successful usb_ep_enable().
The ffs->epfiles pointer is set to NULL in both ffs_data_clear() and
ffs_data_close() functions, and its modification is protected by the
spinlock ffs->eps_lock. And the whole ffs_func_eps_enable() function
is also protected by ffs->eps_lock.
Thus, add NULL pointer handling for ffs->epfiles in the
ffs_func_eps_enable() function to fix issues |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: gadget: Use-after-free during failed initialization and exit of cdnsp gadget
In the __cdnsp_gadget_init() and cdnsp_gadget_exit() functions, the gadget
structure (pdev->gadget) was freed before its endpoints.
The endpoints are linked via the ep_list in the gadget structure.
Freeing the gadget first leaves dangling pointers in the endpoint list.
When the endpoints are subsequently freed, this results in a use-after-free.
Fix:
By separating the usb_del_gadget_udc() operation into distinct "del" and
"put" steps, cdnsp_gadget_free_endpoints() can be executed prior to the
final release of the gadget structure with usb_put_gadget().
A patch similar to bb9c74a5bd14("usb: dwc3: gadget: Free gadget structure
only after freeing endpoints"). |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs3: pretend $Extend records as regular files
Since commit af153bb63a33 ("vfs: catch invalid modes in may_open()")
requires any inode be one of S_IFDIR/S_IFLNK/S_IFREG/S_IFCHR/S_IFBLK/
S_IFIFO/S_IFSOCK type, use S_IFREG for $Extend records. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Verify inode mode when loading from disk
The inode mode loaded from corrupted disk can be invalid. Do like what
commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk")
does. |
| In the Linux kernel, the following vulnerability has been resolved:
accel/habanalabs: support mapping cb with vmalloc-backed coherent memory
When IOMMU is enabled, dma_alloc_coherent() with GFP_USER may return
addresses from the vmalloc range. If such an address is mapped without
VM_MIXEDMAP, vm_insert_page() will trigger a BUG_ON due to the
VM_PFNMAP restriction.
Fix this by checking for vmalloc addresses and setting VM_MIXEDMAP
in the VMA before mapping. This ensures safe mapping and avoids kernel
crashes. The memory is still driver-allocated and cannot be accessed
directly by userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
amd/amdkfd: resolve a race in amdgpu_amdkfd_device_fini_sw
There is race in amdgpu_amdkfd_device_fini_sw and interrupt.
if amdgpu_amdkfd_device_fini_sw run in b/w kfd_cleanup_nodes and
kfree(kfd), and KGD interrupt generated.
kernel panic log:
BUG: kernel NULL pointer dereference, address: 0000000000000098
amdgpu 0000:c8:00.0: amdgpu: Requesting 4 partitions through PSP
PGD d78c68067 P4D d78c68067
kfd kfd: amdgpu: Allocated 3969056 bytes on gart
PUD 1465b8067 PMD @
Oops: @002 [#1] SMP NOPTI
kfd kfd: amdgpu: Total number of KFD nodes to be created: 4
CPU: 115 PID: @ Comm: swapper/115 Kdump: loaded Tainted: G S W OE K
RIP: 0010:_raw_spin_lock_irqsave+0x12/0x40
Code: 89 e@ 41 5c c3 cc cc cc cc 66 66 2e Of 1f 84 00 00 00 00 00 OF 1f 40 00 Of 1f 44% 00 00 41 54 9c 41 5c fa 31 cO ba 01 00 00 00 <fO> OF b1 17 75 Ba 4c 89 e@ 41 Sc
89 c6 e8 07 38 5d
RSP: 0018: ffffc90@1a6b0e28 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000018
0000000000000001 RSI: ffff8883bb623e00 RDI: 0000000000000098
ffff8883bb000000 RO8: ffff888100055020 ROO: ffff888100055020
0000000000000000 R11: 0000000000000000 R12: 0900000000000002
ffff888F2b97da0@ R14: @000000000000098 R15: ffff8883babdfo00
CS: 010 DS: 0000 ES: 0000 CRO: 0000000080050033
CR2: 0000000000000098 CR3: 0000000e7cae2006 CR4: 0000000002770ce0
0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
0000000000000000 DR6: 00000000fffeO7FO DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
kgd2kfd_interrupt+@x6b/0x1f@ [amdgpu]
? amdgpu_fence_process+0xa4/0x150 [amdgpu]
kfd kfd: amdgpu: Node: 0, interrupt_bitmap: 3 YcpxFl Rant tErace
amdgpu_irq_dispatch+0x165/0x210 [amdgpu]
amdgpu_ih_process+0x80/0x100 [amdgpu]
amdgpu: Virtual CRAT table created for GPU
amdgpu_irq_handler+0x1f/@x60 [amdgpu]
__handle_irq_event_percpu+0x3d/0x170
amdgpu: Topology: Add dGPU node [0x74a2:0x1002]
handle_irq_event+0x5a/@xcO
handle_edge_irq+0x93/0x240
kfd kfd: amdgpu: KFD node 1 partition @ size 49148M
asm_call_irq_on_stack+0xf/@x20
</IRQ>
common_interrupt+0xb3/0x130
asm_common_interrupt+0x1le/0x40
5.10.134-010.a1i5000.a18.x86_64 #1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix UAF on sco_conn_free
BUG: KASAN: slab-use-after-free in sco_conn_free net/bluetooth/sco.c:87 [inline]
BUG: KASAN: slab-use-after-free in kref_put include/linux/kref.h:65 [inline]
BUG: KASAN: slab-use-after-free in sco_conn_put+0xdd/0x410
net/bluetooth/sco.c:107
Write of size 8 at addr ffff88811cb96b50 by task kworker/u17:4/352
CPU: 1 UID: 0 PID: 352 Comm: kworker/u17:4 Not tainted
6.17.0-rc5-g717368f83676 #4 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: hci13 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x10b/0x170 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x191/0x550 mm/kasan/report.c:482
kasan_report+0xc4/0x100 mm/kasan/report.c:595
sco_conn_free net/bluetooth/sco.c:87 [inline]
kref_put include/linux/kref.h:65 [inline]
sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107
sco_connect_cfm+0xb4/0xae0 net/bluetooth/sco.c:1441
hci_connect_cfm include/net/bluetooth/hci_core.h:2082 [inline]
hci_conn_failed+0x20a/0x2e0 net/bluetooth/hci_conn.c:1313
hci_conn_unlink+0x55f/0x810 net/bluetooth/hci_conn.c:1121
hci_conn_del+0xb6/0x1110 net/bluetooth/hci_conn.c:1147
hci_abort_conn_sync+0x8c5/0xbb0 net/bluetooth/hci_sync.c:5689
hci_cmd_sync_work+0x281/0x380 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0x77e/0x1040 kernel/workqueue.c:3319
worker_thread+0xbee/0x1200 kernel/workqueue.c:3400
kthread+0x3c7/0x870 kernel/kthread.c:463
ret_from_fork+0x13a/0x1e0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 31370:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0x82/0x90 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4382 [inline]
__kmalloc_noprof+0x22f/0x390 mm/slub.c:4394
kmalloc_noprof include/linux/slab.h:909 [inline]
sk_prot_alloc+0xae/0x220 net/core/sock.c:2239
sk_alloc+0x34/0x5a0 net/core/sock.c:2295
bt_sock_alloc+0x3c/0x330 net/bluetooth/af_bluetooth.c:151
sco_sock_alloc net/bluetooth/sco.c:562 [inline]
sco_sock_create+0xc0/0x350 net/bluetooth/sco.c:593
bt_sock_create+0x161/0x3b0 net/bluetooth/af_bluetooth.c:135
__sock_create+0x3ad/0x780 net/socket.c:1589
sock_create net/socket.c:1647 [inline]
__sys_socket_create net/socket.c:1684 [inline]
__sys_socket+0xd5/0x330 net/socket.c:1731
__do_sys_socket net/socket.c:1745 [inline]
__se_sys_socket net/socket.c:1743 [inline]
__x64_sys_socket+0x7a/0x90 net/socket.c:1743
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xc7/0x240 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 31374:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x3d/0x50 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2428 [inline]
slab_free mm/slub.c:4701 [inline]
kfree+0x199/0x3b0 mm/slub.c:4900
sk_prot_free net/core/sock.c:2278 [inline]
__sk_destruct+0x4aa/0x630 net/core/sock.c:2373
sco_sock_release+0x2ad/0x300 net/bluetooth/sco.c:1333
__sock_release net/socket.c:649 [inline]
sock_close+0xb8/0x230 net/socket.c:1439
__fput+0x3d1/0x9e0 fs/file_table.c:468
task_work_run+0x206/0x2a0 kernel/task_work.c:227
get_signal+0x1201/0x1410 kernel/signal.c:2807
arch_do_signal_or_restart+0x34/0x740 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop+0x68/0xc0 kernel/entry/common.c:40
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
s
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bcsp: receive data only if registered
Currently, bcsp_recv() can be called even when the BCSP protocol has not
been registered. This leads to a NULL pointer dereference, as shown in
the following stack trace:
KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f]
RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590
Call Trace:
<TASK>
hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627
tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290
tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
To prevent this, ensure that the HCI_UART_REGISTERED flag is set before
processing received data. If the protocol is not registered, return
-EUNATCH. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: validate cluster allocation bits of the allocation bitmap
syzbot created an exfat image with cluster bits not set for the allocation
bitmap. exfat-fs reads and uses the allocation bitmap without checking
this. The problem is that if the start cluster of the allocation bitmap
is 6, cluster 6 can be allocated when creating a directory with mkdir.
exfat zeros out this cluster in exfat_mkdir, which can delete existing
entries. This can reallocate the allocated entries. In addition,
the allocation bitmap is also zeroed out, so cluster 6 can be reallocated.
This patch adds exfat_test_bitmap_range to validate that clusters used for
the allocation bitmap are correctly marked as in-use. |
| In the Linux kernel, the following vulnerability has been resolved:
orangefs: fix xattr related buffer overflow...
Willy Tarreau <w@1wt.eu> forwarded me a message from
Disclosure <disclosure@aisle.com> with the following
warning:
> The helper `xattr_key()` uses the pointer variable in the loop condition
> rather than dereferencing it. As `key` is incremented, it remains non-NULL
> (until it runs into unmapped memory), so the loop does not terminate on
> valid C strings and will walk memory indefinitely, consuming CPU or hanging
> the thread.
I easily reproduced this with setfattr and getfattr, causing a kernel
oops, hung user processes and corrupted orangefs files. Disclosure
sent along a diff (not a patch) with a suggested fix, which I based
this patch on.
After xattr_key started working right, xfstest generic/069 exposed an
xattr related memory leak that lead to OOM. xattr_key returns
a hashed key. When adding xattrs to the orangefs xattr cache, orangefs
used hash_add, a kernel hashing macro. hash_add also hashes the key using
hash_log which resulted in additions to the xattr cache going to the wrong
hash bucket. generic/069 tortures a single file and orangefs does a
getattr for the xattr "security.capability" every time. Orangefs
negative caches on xattrs which includes a kmalloc. Since adds to the
xattr cache were going to the wrong bucket, every getattr for
"security.capability" resulted in another kmalloc, none of which were
ever freed.
I changed the two uses of hash_add to hlist_add_head instead
and the memory leak ceased and generic/069 quit throwing furniture. |
| In the Linux kernel, the following vulnerability has been resolved:
9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN
p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq)
if list_empty(&m->req_list).
However, if the pipe is full, we need to read more data and this used to
work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer
if the pipe is still full").
p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before
the commit above) triggered the unnecessary wakeup. This wakeup calls
p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux()
will notice EPOLLIN and schedule_work(&m->rq).
This no longer happens after the optimization above, change p9_fd_request()
to use p9_poll_mux() instead of only checking for EPOLLOUT. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds
Add bounds checking to prevent writes past framebuffer boundaries when
rendering text near screen edges. Return early if the Y position is off-screen
and clip image height to screen boundary. Break from the rendering loop if the
X position is off-screen. When clipping image width to fit the screen, update
the character count to match the clipped width to prevent buffer size
mismatches.
Without the character count update, bit_putcs_aligned and bit_putcs_unaligned
receive mismatched parameters where the buffer is allocated for the clipped
width but cnt reflects the original larger count, causing out-of-bounds writes. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: ensure no dirty metadata is written back for an fs with errors
[BUG]
During development of a minor feature (make sure all btrfs_bio::end_io()
is called in task context), I noticed a crash in generic/388, where
metadata writes triggered new works after btrfs_stop_all_workers().
It turns out that it can even happen without any code modification, just
using RAID5 for metadata and the same workload from generic/388 is going
to trigger the use-after-free.
[CAUSE]
If btrfs hits an error, the fs is marked as error, no new
transaction is allowed thus metadata is in a frozen state.
But there are some metadata modifications before that error, and they are
still in the btree inode page cache.
Since there will be no real transaction commit, all those dirty folios
are just kept as is in the page cache, and they can not be invalidated
by invalidate_inode_pages2() call inside close_ctree(), because they are
dirty.
And finally after btrfs_stop_all_workers(), we call iput() on btree
inode, which triggers writeback of those dirty metadata.
And if the fs is using RAID56 metadata, this will trigger RMW and queue
new works into rmw_workers, which is already stopped, causing warning
from queue_work() and use-after-free.
[FIX]
Add a special handling for write_one_eb(), that if the fs is already in
an error state, immediately mark the bbio as failure, instead of really
submitting them.
Then during close_ctree(), iput() will just discard all those dirty
tree blocks without really writing them back, thus no more new jobs for
already stopped-and-freed workqueues.
The extra discard in write_one_eb() also acts as an extra safenet.
E.g. the transaction abort is triggered by some extent/free space
tree corruptions, and since extent/free space tree is already corrupted
some tree blocks may be allocated where they shouldn't be (overwriting
existing tree blocks). In that case writing them back will further
corrupting the fs. |
| In the Linux kernel, the following vulnerability has been resolved:
media: videobuf2: forbid remove_bufs when legacy fileio is active
vb2_ioctl_remove_bufs() call manipulates queue internal buffer list,
potentially overwriting some pointers used by the legacy fileio access
mode. Forbid that ioctl when fileio is active to protect internal queue
state between subsequent read/write calls. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: validate skb length for unknown CC opcode
In hci_cmd_complete_evt(), if the command complete event has an unknown
opcode, we assume the first byte of the remaining skb->data contains the
return status. However, parameter data has previously been pulled in
hci_event_func(), which may leave the skb empty. If so, using skb->data[0]
for the return status uses un-init memory.
The fix is to check skb->len before using skb->data. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement gettimex64 with -EOPNOTSUPP
gve implemented a ptp_clock for sole use of do_aux_work at this time.
ptp_clock_gettime() and ptp_sys_offset() assume every ptp_clock has
implemented either gettimex64 or gettime64. Stub gettimex64 and return
-EOPNOTSUPP to prevent NULL dereferencing. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Implement settime64 with -EOPNOTSUPP
ptp_clock_settime() assumes every ptp_clock has implemented settime64().
Stub it with -EOPNOTSUPP to prevent a NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: fix use-after-free due to MST port state bypass
syzbot reported[1] a use-after-free when deleting an expired fdb. It is
due to a race condition between learning still happening and a port being
deleted, after all its fdbs have been flushed. The port's state has been
toggled to disabled so no learning should happen at that time, but if we
have MST enabled, it will bypass the port's state, that together with VLAN
filtering disabled can lead to fdb learning at a time when it shouldn't
happen while the port is being deleted. VLAN filtering must be disabled
because we flush the port VLANs when it's being deleted which will stop
learning. This fix adds a check for the port's vlan group which is
initialized to NULL when the port is getting deleted, that avoids the port
state bypass. When MST is enabled there would be a minimal new overhead
in the fast-path because the port's vlan group pointer is cache-hot.
[1] https://syzkaller.appspot.com/bug?extid=dd280197f0f7ab3917be |