Filtered by vendor Nodejs
Subscriptions
Total
182 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2021-22883 | 6 Fedoraproject, Netapp, Nodejs and 3 more | 12 Fedora, E-series Performance Analyzer, Node.js and 9 more | 2024-11-21 | 7.5 High |
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory. | ||||
CVE-2020-8287 | 6 Debian, Fedoraproject, Nodejs and 3 more | 7 Debian Linux, Fedora, Node.js and 4 more | 2024-11-21 | 6.5 Medium |
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling. | ||||
CVE-2020-8277 | 5 C-ares Project, Fedoraproject, Nodejs and 2 more | 10 C-ares, Fedora, Node.js and 7 more | 2024-11-21 | 7.5 High |
A Node.js application that allows an attacker to trigger a DNS request for a host of their choice could trigger a Denial of Service in versions < 15.2.1, < 14.15.1, and < 12.19.1 by getting the application to resolve a DNS record with a larger number of responses. This is fixed in 15.2.1, 14.15.1, and 12.19.1. | ||||
CVE-2020-8265 | 6 Debian, Fedoraproject, Nodejs and 3 more | 7 Debian Linux, Fedora, Node.js and 4 more | 2024-11-21 | 8.1 High |
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation. When writing to a TLS enabled socket, node::StreamBase::Write calls node::TLSWrap::DoWrite with a freshly allocated WriteWrap object as first argument. If the DoWrite method does not return an error, this object is passed back to the caller as part of a StreamWriteResult structure. This may be exploited to corrupt memory leading to a Denial of Service or potentially other exploits. | ||||
CVE-2020-8252 | 4 Fedoraproject, Nodejs, Opensuse and 1 more | 6 Fedora, Node.js, Leap and 3 more | 2024-11-21 | 7.8 High |
The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes. | ||||
CVE-2020-8251 | 2 Fedoraproject, Nodejs | 2 Fedora, Node.js | 2024-11-21 | 7.5 High |
Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission which can make the server unable to accept new connections. | ||||
CVE-2020-8201 | 4 Fedoraproject, Nodejs, Opensuse and 1 more | 6 Fedora, Node.js, Leap and 3 more | 2024-11-21 | 7.4 High |
Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names. | ||||
CVE-2020-8174 | 4 Netapp, Nodejs, Oracle and 1 more | 13 Active Iq Unified Manager, Oncommand Insight, Oncommand Workflow Automation and 10 more | 2024-11-21 | 8.1 High |
napi_get_value_string_*() allows various kinds of memory corruption in node < 10.21.0, 12.18.0, and < 14.4.0. | ||||
CVE-2020-8172 | 3 Nodejs, Oracle, Redhat | 8 Node.js, Banking Extensibility Workbench, Blockchain Platform and 5 more | 2024-11-21 | 7.4 High |
TLS session reuse can lead to host certificate verification bypass in node version < 12.18.0 and < 14.4.0. | ||||
CVE-2020-1971 | 9 Debian, Fedoraproject, Netapp and 6 more | 55 Debian Linux, Fedora, Active Iq Unified Manager and 52 more | 2024-11-21 | 5.9 Medium |
The X.509 GeneralName type is a generic type for representing different types of names. One of those name types is known as EDIPartyName. OpenSSL provides a function GENERAL_NAME_cmp which compares different instances of a GENERAL_NAME to see if they are equal or not. This function behaves incorrectly when both GENERAL_NAMEs contain an EDIPARTYNAME. A NULL pointer dereference and a crash may occur leading to a possible denial of service attack. OpenSSL itself uses the GENERAL_NAME_cmp function for two purposes: 1) Comparing CRL distribution point names between an available CRL and a CRL distribution point embedded in an X509 certificate 2) When verifying that a timestamp response token signer matches the timestamp authority name (exposed via the API functions TS_RESP_verify_response and TS_RESP_verify_token) If an attacker can control both items being compared then that attacker could trigger a crash. For example if the attacker can trick a client or server into checking a malicious certificate against a malicious CRL then this may occur. Note that some applications automatically download CRLs based on a URL embedded in a certificate. This checking happens prior to the signatures on the certificate and CRL being verified. OpenSSL's s_server, s_client and verify tools have support for the "-crl_download" option which implements automatic CRL downloading and this attack has been demonstrated to work against those tools. Note that an unrelated bug means that affected versions of OpenSSL cannot parse or construct correct encodings of EDIPARTYNAME. However it is possible to construct a malformed EDIPARTYNAME that OpenSSL's parser will accept and hence trigger this attack. All OpenSSL 1.1.1 and 1.0.2 versions are affected by this issue. Other OpenSSL releases are out of support and have not been checked. Fixed in OpenSSL 1.1.1i (Affected 1.1.1-1.1.1h). Fixed in OpenSSL 1.0.2x (Affected 1.0.2-1.0.2w). | ||||
CVE-2020-11080 | 7 Debian, Fedoraproject, Nghttp2 and 4 more | 16 Debian Linux, Fedora, Nghttp2 and 13 more | 2024-11-21 | 3.7 Low |
In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service. The proof of concept attack involves a malicious client constructing a SETTINGS frame with a length of 14,400 bytes (2400 individual settings entries) over and over again. The attack causes the CPU to spike at 100%. nghttp2 v1.41.0 fixes this vulnerability. There is a workaround to this vulnerability. Implement nghttp2_on_frame_recv_callback callback, and if received frame is SETTINGS frame and the number of settings entries are large (e.g., > 32), then drop the connection. | ||||
CVE-2020-10531 | 9 Canonical, Debian, Fedoraproject and 6 more | 15 Ubuntu Linux, Debian Linux, Fedora and 12 more | 2024-11-21 | 8.8 High |
An issue was discovered in International Components for Unicode (ICU) for C/C++ through 66.1. An integer overflow, leading to a heap-based buffer overflow, exists in the UnicodeString::doAppend() function in common/unistr.cpp. | ||||
CVE-2019-9512 | 6 Apache, Apple, Canonical and 3 more | 24 Traffic Server, Mac Os X, Swiftnio and 21 more | 2024-11-21 | 7.5 High |
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||
CVE-2019-5739 | 2 Nodejs, Opensuse | 2 Node.js, Leap | 2024-11-21 | 7.5 High |
Keep-alive HTTP and HTTPS connections can remain open and inactive for up to 2 minutes in Node.js 6.16.0 and earlier. Node.js 8.0.0 introduced a dedicated server.keepAliveTimeout which defaults to 5 seconds. The behavior in Node.js 6.16.0 and earlier is a potential Denial of Service (DoS) attack vector. Node.js 6.17.0 introduces server.keepAliveTimeout and the 5-second default. | ||||
CVE-2019-5737 | 3 Nodejs, Opensuse, Redhat | 4 Node.js, Leap, Enterprise Linux and 1 more | 2024-11-21 | 7.5 High |
In Node.js including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1, an attacker can cause a Denial of Service (DoS) by establishing an HTTP or HTTPS connection in keep-alive mode and by sending headers very slowly. This keeps the connection and associated resources alive for a long period of time. Potential attacks are mitigated by the use of a load balancer or other proxy layer. This vulnerability is an extension of CVE-2018-12121, addressed in November and impacts all active Node.js release lines including 6.x before 6.17.0, 8.x before 8.15.1, 10.x before 10.15.2, and 11.x before 11.10.1. | ||||
CVE-2019-1559 | 13 Canonical, Debian, F5 and 10 more | 91 Ubuntu Linux, Debian Linux, Big-ip Access Policy Manager and 88 more | 2024-11-21 | 5.9 Medium |
If an application encounters a fatal protocol error and then calls SSL_shutdown() twice (once to send a close_notify, and once to receive one) then OpenSSL can respond differently to the calling application if a 0 byte record is received with invalid padding compared to if a 0 byte record is received with an invalid MAC. If the application then behaves differently based on that in a way that is detectable to the remote peer, then this amounts to a padding oracle that could be used to decrypt data. In order for this to be exploitable "non-stitched" ciphersuites must be in use. Stitched ciphersuites are optimised implementations of certain commonly used ciphersuites. Also the application must call SSL_shutdown() twice even if a protocol error has occurred (applications should not do this but some do anyway). Fixed in OpenSSL 1.0.2r (Affected 1.0.2-1.0.2q). | ||||
CVE-2019-15606 | 5 Debian, Nodejs, Opensuse and 2 more | 9 Debian Linux, Node.js, Leap and 6 more | 2024-11-21 | 9.8 Critical |
Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons | ||||
CVE-2019-15605 | 6 Debian, Fedoraproject, Nodejs and 3 more | 16 Debian Linux, Fedora, Node.js and 13 more | 2024-11-21 | 9.8 Critical |
HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed | ||||
CVE-2019-15604 | 5 Debian, Nodejs, Opensuse and 2 more | 12 Debian Linux, Node.js, Leap and 9 more | 2024-11-21 | 7.5 High |
Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate | ||||
CVE-2018-7167 | 2 Nodejs, Redhat | 2 Node.js, Rhel Software Collections | 2024-11-21 | 7.5 High |
Calling Buffer.fill() or Buffer.alloc() with some parameters can lead to a hang which could result in a Denial of Service. In order to address this vulnerability, the implementations of Buffer.alloc() and Buffer.fill() were updated so that they zero fill instead of hanging in these cases. All versions of Node.js 6.x (LTS "Boron"), 8.x (LTS "Carbon"), and 9.x are vulnerable. All versions of Node.js 10.x (Current) are NOT vulnerable. |