| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: prevent concurrent execution of tcp_sk_exit_batch
Its possible that two threads call tcp_sk_exit_batch() concurrently,
once from the cleanup_net workqueue, once from a task that failed to clone
a new netns. In the latter case, error unwinding calls the exit handlers
in reverse order for the 'failed' netns.
tcp_sk_exit_batch() calls tcp_twsk_purge().
Problem is that since commit b099ce2602d8 ("net: Batch inet_twsk_purge"),
this function picks up twsk in any dying netns, not just the one passed
in via exit_batch list.
This means that the error unwind of setup_net() can "steal" and destroy
timewait sockets belonging to the exiting netns.
This allows the netns exit worker to proceed to call
WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
without the expected 1 -> 0 transition, which then splats.
At same time, error unwind path that is also running inet_twsk_purge()
will splat as well:
WARNING: .. at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210
...
refcount_dec include/linux/refcount.h:351 [inline]
inet_twsk_kill+0x758/0x9c0 net/ipv4/inet_timewait_sock.c:70
inet_twsk_deschedule_put net/ipv4/inet_timewait_sock.c:221
inet_twsk_purge+0x725/0x890 net/ipv4/inet_timewait_sock.c:304
tcp_sk_exit_batch+0x1c/0x170 net/ipv4/tcp_ipv4.c:3522
ops_exit_list+0x128/0x180 net/core/net_namespace.c:178
setup_net+0x714/0xb40 net/core/net_namespace.c:375
copy_net_ns+0x2f0/0x670 net/core/net_namespace.c:508
create_new_namespaces+0x3ea/0xb10 kernel/nsproxy.c:110
... because refcount_dec() of tw_refcount unexpectedly dropped to 0.
This doesn't seem like an actual bug (no tw sockets got lost and I don't
see a use-after-free) but as erroneous trigger of debug check.
Add a mutex to force strict ordering: the task that calls tcp_twsk_purge()
blocks other task from doing final _dec_and_test before mutex-owner has
removed all tw sockets of dying netns. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: line6: Fix racy access to midibuf
There can be concurrent accesses to line6 midibuf from both the URB
completion callback and the rawmidi API access. This could be a cause
of KMSAN warning triggered by syzkaller below (so put as reported-by
here).
This patch protects the midibuf call of the former code path with a
spinlock for avoiding the possible races. |
| A race condition was addressed with additional validation. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to bypass Privacy preferences. |
| A race condition was addressed with improved locking. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. Mounting a maliciously crafted SMB network share may lead to system termination. |
| A race condition was addressed with additional validation. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to access user-sensitive data. |
| In the Linux kernel, the following vulnerability has been resolved:
memcg: protect concurrent access to mem_cgroup_idr
Commit 73f576c04b94 ("mm: memcontrol: fix cgroup creation failure after
many small jobs") decoupled the memcg IDs from the CSS ID space to fix the
cgroup creation failures. It introduced IDR to maintain the memcg ID
space. The IDR depends on external synchronization mechanisms for
modifications. For the mem_cgroup_idr, the idr_alloc() and idr_replace()
happen within css callback and thus are protected through cgroup_mutex
from concurrent modifications. However idr_remove() for mem_cgroup_idr
was not protected against concurrency and can be run concurrently for
different memcgs when they hit their refcnt to zero. Fix that.
We have been seeing list_lru based kernel crashes at a low frequency in
our fleet for a long time. These crashes were in different part of
list_lru code including list_lru_add(), list_lru_del() and reparenting
code. Upon further inspection, it looked like for a given object (dentry
and inode), the super_block's list_lru didn't have list_lru_one for the
memcg of that object. The initial suspicions were either the object is
not allocated through kmem_cache_alloc_lru() or somehow
memcg_list_lru_alloc() failed to allocate list_lru_one() for a memcg but
returned success. No evidence were found for these cases.
Looking more deeply, we started seeing situations where valid memcg's id
is not present in mem_cgroup_idr and in some cases multiple valid memcgs
have same id and mem_cgroup_idr is pointing to one of them. So, the most
reasonable explanation is that these situations can happen due to race
between multiple idr_remove() calls or race between
idr_alloc()/idr_replace() and idr_remove(). These races are causing
multiple memcgs to acquire the same ID and then offlining of one of them
would cleanup list_lrus on the system for all of them. Later access from
other memcgs to the list_lru cause crashes due to missing list_lru_one. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Always drain health in shutdown callback
There is no point in recovery during device shutdown. if health
work started need to wait for it to avoid races and NULL pointer
access.
Hence, drain health WQ on shutdown callback. |
| In the Linux kernel, the following vulnerability has been resolved:
dma: fix call order in dmam_free_coherent
dmam_free_coherent() frees a DMA allocation, which makes the
freed vaddr available for reuse, then calls devres_destroy()
to remove and free the data structure used to track the DMA
allocation. Between the two calls, it is possible for a
concurrent task to make an allocation with the same vaddr
and add it to the devres list.
If this happens, there will be two entries in the devres list
with the same vaddr and devres_destroy() can free the wrong
entry, triggering the WARN_ON() in dmam_match.
Fix by destroying the devres entry before freeing the DMA
allocation.
kokonut //net/encryption
http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix race between delayed_work() and ceph_monc_stop()
The way the delayed work is handled in ceph_monc_stop() is prone to
races with mon_fault() and possibly also finish_hunting(). Both of
these can requeue the delayed work which wouldn't be canceled by any of
the following code in case that happens after cancel_delayed_work_sync()
runs -- __close_session() doesn't mess with the delayed work in order
to avoid interfering with the hunting interval logic. This part was
missed in commit b5d91704f53e ("libceph: behave in mon_fault() if
cur_mon < 0") and use-after-free can still ensue on monc and objects
that hang off of it, with monc->auth and monc->monmap being
particularly susceptible to quickly being reused.
To fix this:
- clear monc->cur_mon and monc->hunting as part of closing the session
in ceph_monc_stop()
- bail from delayed_work() if monc->cur_mon is cleared, similar to how
it's done in mon_fault() and finish_hunting() (based on monc->hunting)
- call cancel_delayed_work_sync() after the session is closed |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: cyclic allocation of msg_id to avoid reuse
Reusing the msg_id after a maliciously completed reopen request may cause
a read request to remain unprocessed and result in a hung, as shown below:
t1 | t2 | t3
-------------------------------------------------
cachefiles_ondemand_select_req
cachefiles_ondemand_object_is_close(A)
cachefiles_ondemand_set_object_reopening(A)
queue_work(fscache_object_wq, &info->work)
ondemand_object_worker
cachefiles_ondemand_init_object(A)
cachefiles_ondemand_send_req(OPEN)
// get msg_id 6
wait_for_completion(&req_A->done)
cachefiles_ondemand_daemon_read
// read msg_id 6 req_A
cachefiles_ondemand_get_fd
copy_to_user
// Malicious completion msg_id 6
copen 6,-1
cachefiles_ondemand_copen
complete(&req_A->done)
// will not set the object to close
// because ondemand_id && fd is valid.
// ondemand_object_worker() is done
// but the object is still reopening.
// new open req_B
cachefiles_ondemand_init_object(B)
cachefiles_ondemand_send_req(OPEN)
// reuse msg_id 6
process_open_req
copen 6,A.size
// The expected failed copen was executed successfully
Expect copen to fail, and when it does, it closes fd, which sets the
object to close, and then close triggers reopen again. However, due to
msg_id reuse resulting in a successful copen, the anonymous fd is not
closed until the daemon exits. Therefore read requests waiting for reopen
to complete may trigger hung task.
To avoid this issue, allocate the msg_id cyclically to avoid reusing the
msg_id for a very short duration of time. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: Fix fcntl/close race recovery compat path
When I wrote commit 3cad1bc01041 ("filelock: Remove locks reliably when
fcntl/close race is detected"), I missed that there are two copies of the
code I was patching: The normal version, and the version for 64-bit offsets
on 32-bit kernels.
Thanks to Greg KH for stumbling over this while doing the stable
backport...
Apply exactly the same fix to the compat path for 32-bit kernels. |
| In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix race condition in netpoll_owner_active
KCSAN detected a race condition in netpoll:
BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb
write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10:
net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822)
<snip>
read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2:
netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393)
netpoll_send_udp (net/core/netpoll.c:?)
<snip>
value changed: 0x0000000a -> 0xffffffff
This happens because netpoll_owner_active() needs to check if the
current CPU is the owner of the lock, touching napi->poll_owner
non atomically. The ->poll_owner field contains the current CPU holding
the lock.
Use an atomic read to check if the poll owner is the current CPU. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/lima: mask irqs in timeout path before hard reset
There is a race condition in which a rendering job might take just long
enough to trigger the drm sched job timeout handler but also still
complete before the hard reset is done by the timeout handler.
This runs into race conditions not expected by the timeout handler.
In some very specific cases it currently may result in a refcount
imbalance on lima_pm_idle, with a stack dump such as:
[10136.669170] WARNING: CPU: 0 PID: 0 at drivers/gpu/drm/lima/lima_devfreq.c:205 lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669459] pc : lima_devfreq_record_idle+0xa0/0xb0
...
[10136.669628] Call trace:
[10136.669634] lima_devfreq_record_idle+0xa0/0xb0
[10136.669646] lima_sched_pipe_task_done+0x5c/0xb0
[10136.669656] lima_gp_irq_handler+0xa8/0x120
[10136.669666] __handle_irq_event_percpu+0x48/0x160
[10136.669679] handle_irq_event+0x4c/0xc0
We can prevent that race condition entirely by masking the irqs at the
beginning of the timeout handler, at which point we give up on waiting
for that job entirely.
The irqs will be enabled again at the next hard reset which is already
done as a recovery by the timeout handler. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Fix a data race on last_boosted_vcpu in kvm_vcpu_on_spin()
Use {READ,WRITE}_ONCE() to access kvm->last_boosted_vcpu to ensure the
loads and stores are atomic. In the extremely unlikely scenario the
compiler tears the stores, it's theoretically possible for KVM to attempt
to get a vCPU using an out-of-bounds index, e.g. if the write is split
into multiple 8-bit stores, and is paired with a 32-bit load on a VM with
257 vCPUs:
CPU0 CPU1
last_boosted_vcpu = 0xff;
(last_boosted_vcpu = 0x100)
last_boosted_vcpu[15:8] = 0x01;
i = (last_boosted_vcpu = 0x1ff)
last_boosted_vcpu[7:0] = 0x00;
vcpu = kvm->vcpu_array[0x1ff];
As detected by KCSAN:
BUG: KCSAN: data-race in kvm_vcpu_on_spin [kvm] / kvm_vcpu_on_spin [kvm]
write to 0xffffc90025a92344 of 4 bytes by task 4340 on cpu 16:
kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4112) kvm
handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel
vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:?
arch/x86/kvm/vmx/vmx.c:6606) kvm_intel
vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm
kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm
kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm
__se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890)
__x64_sys_ioctl (fs/ioctl.c:890)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
read to 0xffffc90025a92344 of 4 bytes by task 4342 on cpu 4:
kvm_vcpu_on_spin (arch/x86/kvm/../../../virt/kvm/kvm_main.c:4069) kvm
handle_pause (arch/x86/kvm/vmx/vmx.c:5929) kvm_intel
vmx_handle_exit (arch/x86/kvm/vmx/vmx.c:?
arch/x86/kvm/vmx/vmx.c:6606) kvm_intel
vcpu_run (arch/x86/kvm/x86.c:11107 arch/x86/kvm/x86.c:11211) kvm
kvm_arch_vcpu_ioctl_run (arch/x86/kvm/x86.c:?) kvm
kvm_vcpu_ioctl (arch/x86/kvm/../../../virt/kvm/kvm_main.c:?) kvm
__se_sys_ioctl (fs/ioctl.c:52 fs/ioctl.c:904 fs/ioctl.c:890)
__x64_sys_ioctl (fs/ioctl.c:890)
x64_sys_call (arch/x86/entry/syscall_64.c:33)
do_syscall_64 (arch/x86/entry/common.c:?)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
value changed: 0x00000012 -> 0x00000000 |
| In the Linux kernel, the following vulnerability has been resolved:
ima: Avoid blocking in RCU read-side critical section
A panic happens in ima_match_policy:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
PGD 42f873067 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 5 PID: 1286325 Comm: kubeletmonit.sh
Kdump: loaded Tainted: P
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 0.0.0 02/06/2015
RIP: 0010:ima_match_policy+0x84/0x450
Code: 49 89 fc 41 89 cf 31 ed 89 44 24 14 eb 1c 44 39
7b 18 74 26 41 83 ff 05 74 20 48 8b 1b 48 3b 1d
f2 b9 f4 00 0f 84 9c 01 00 00 <44> 85 73 10 74 ea
44 8b 6b 14 41 f6 c5 01 75 d4 41 f6 c5 02 74 0f
RSP: 0018:ff71570009e07a80 EFLAGS: 00010207
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000200
RDX: ffffffffad8dc7c0 RSI: 0000000024924925 RDI: ff3e27850dea2000
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffffabfce739
R10: ff3e27810cc42400 R11: 0000000000000000 R12: ff3e2781825ef970
R13: 00000000ff3e2785 R14: 000000000000000c R15: 0000000000000001
FS: 00007f5195b51740(0000)
GS:ff3e278b12d40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 0000000626d24002 CR4: 0000000000361ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
ima_get_action+0x22/0x30
process_measurement+0xb0/0x830
? page_add_file_rmap+0x15/0x170
? alloc_set_pte+0x269/0x4c0
? prep_new_page+0x81/0x140
? simple_xattr_get+0x75/0xa0
? selinux_file_open+0x9d/0xf0
ima_file_check+0x64/0x90
path_openat+0x571/0x1720
do_filp_open+0x9b/0x110
? page_counter_try_charge+0x57/0xc0
? files_cgroup_alloc_fd+0x38/0x60
? __alloc_fd+0xd4/0x250
? do_sys_open+0x1bd/0x250
do_sys_open+0x1bd/0x250
do_syscall_64+0x5d/0x1d0
entry_SYSCALL_64_after_hwframe+0x65/0xca
Commit c7423dbdbc9e ("ima: Handle -ESTALE returned by
ima_filter_rule_match()") introduced call to ima_lsm_copy_rule within a
RCU read-side critical section which contains kmalloc with GFP_KERNEL.
This implies a possible sleep and violates limitations of RCU read-side
critical sections on non-PREEMPT systems.
Sleeping within RCU read-side critical section might cause
synchronize_rcu() returning early and break RCU protection, allowing a
UAF to happen.
The root cause of this issue could be described as follows:
| Thread A | Thread B |
| |ima_match_policy |
| | rcu_read_lock |
|ima_lsm_update_rule | |
| synchronize_rcu | |
| | kmalloc(GFP_KERNEL)|
| | sleep |
==> synchronize_rcu returns early
| kfree(entry) | |
| | entry = entry->next|
==> UAF happens and entry now becomes NULL (or could be anything).
| | entry->action |
==> Accessing entry might cause panic.
To fix this issue, we are converting all kmalloc that is called within
RCU read-side critical section to use GFP_ATOMIC.
[PM: fixed missing comment, long lines, !CONFIG_IMA_LSM_RULES case] |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix races between hole punching and AIO+DIO
After commit "ocfs2: return real error code in ocfs2_dio_wr_get_block",
fstests/generic/300 become from always failed to sometimes failed:
========================================================================
[ 473.293420 ] run fstests generic/300
[ 475.296983 ] JBD2: Ignoring recovery information on journal
[ 475.302473 ] ocfs2: Mounting device (253,1) on (node local, slot 0) with ordered data mode.
[ 494.290998 ] OCFS2: ERROR (device dm-1): ocfs2_change_extent_flag: Owner 5668 has an extent at cpos 78723 which can no longer be found
[ 494.291609 ] On-disk corruption discovered. Please run fsck.ocfs2 once the filesystem is unmounted.
[ 494.292018 ] OCFS2: File system is now read-only.
[ 494.292224 ] (kworker/19:11,2628,19):ocfs2_mark_extent_written:5272 ERROR: status = -30
[ 494.292602 ] (kworker/19:11,2628,19):ocfs2_dio_end_io_write:2374 ERROR: status = -3
fio: io_u error on file /mnt/scratch/racer: Read-only file system: write offset=460849152, buflen=131072
=========================================================================
In __blockdev_direct_IO, ocfs2_dio_wr_get_block is called to add unwritten
extents to a list. extents are also inserted into extent tree in
ocfs2_write_begin_nolock. Then another thread call fallocate to puch a
hole at one of the unwritten extent. The extent at cpos was removed by
ocfs2_remove_extent(). At end io worker thread, ocfs2_search_extent_list
found there is no such extent at the cpos.
T1 T2 T3
inode lock
...
insert extents
...
inode unlock
ocfs2_fallocate
__ocfs2_change_file_space
inode lock
lock ip_alloc_sem
ocfs2_remove_inode_range inode
ocfs2_remove_btree_range
ocfs2_remove_extent
^---remove the extent at cpos 78723
...
unlock ip_alloc_sem
inode unlock
ocfs2_dio_end_io
ocfs2_dio_end_io_write
lock ip_alloc_sem
ocfs2_mark_extent_written
ocfs2_change_extent_flag
ocfs2_search_extent_list
^---failed to find extent
...
unlock ip_alloc_sem
In most filesystems, fallocate is not compatible with racing with AIO+DIO,
so fix it by adding to wait for all dio before fallocate/punch_hole like
ext4. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix race between namespace cleanup and gc in the list:set type
Lion Ackermann reported that there is a race condition between namespace cleanup
in ipset and the garbage collection of the list:set type. The namespace
cleanup can destroy the list:set type of sets while the gc of the set type is
waiting to run in rcu cleanup. The latter uses data from the destroyed set which
thus leads use after free. The patch contains the following parts:
- When destroying all sets, first remove the garbage collectors, then wait
if needed and then destroy the sets.
- Fix the badly ordered "wait then remove gc" for the destroy a single set
case.
- Fix the missing rcu locking in the list:set type in the userspace test
case.
- Use proper RCU list handlings in the list:set type.
The patch depends on c1193d9bbbd3 (netfilter: ipset: Add list flush to cancel_gc). |
| In the Linux kernel, the following vulnerability has been resolved:
sock_map: avoid race between sock_map_close and sk_psock_put
sk_psock_get will return NULL if the refcount of psock has gone to 0, which
will happen when the last call of sk_psock_put is done. However,
sk_psock_drop may not have finished yet, so the close callback will still
point to sock_map_close despite psock being NULL.
This can be reproduced with a thread deleting an element from the sock map,
while the second one creates a socket, adds it to the map and closes it.
That will trigger the WARN_ON_ONCE:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 7220 at net/core/sock_map.c:1701 sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Modules linked in:
CPU: 1 PID: 7220 Comm: syz-executor380 Not tainted 6.9.0-syzkaller-07726-g3c999d1ae3c7 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
RIP: 0010:sock_map_close+0x2a2/0x2d0 net/core/sock_map.c:1701
Code: df e8 92 29 88 f8 48 8b 1b 48 89 d8 48 c1 e8 03 42 80 3c 20 00 74 08 48 89 df e8 79 29 88 f8 4c 8b 23 eb 89 e8 4f 15 23 f8 90 <0f> 0b 90 48 83 c4 08 5b 41 5c 41 5d 41 5e 41 5f 5d e9 13 26 3d 02
RSP: 0018:ffffc9000441fda8 EFLAGS: 00010293
RAX: ffffffff89731ae1 RBX: ffffffff94b87540 RCX: ffff888029470000
RDX: 0000000000000000 RSI: ffffffff8bcab5c0 RDI: ffffffff8c1faba0
RBP: 0000000000000000 R08: ffffffff92f9b61f R09: 1ffffffff25f36c3
R10: dffffc0000000000 R11: fffffbfff25f36c4 R12: ffffffff89731840
R13: ffff88804b587000 R14: ffff88804b587000 R15: ffffffff89731870
FS: 000055555e080380(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000207d4000 CR4: 0000000000350ef0
Call Trace:
<TASK>
unix_release+0x87/0xc0 net/unix/af_unix.c:1048
__sock_release net/socket.c:659 [inline]
sock_close+0xbe/0x240 net/socket.c:1421
__fput+0x42b/0x8a0 fs/file_table.c:422
__do_sys_close fs/open.c:1556 [inline]
__se_sys_close fs/open.c:1541 [inline]
__x64_sys_close+0x7f/0x110 fs/open.c:1541
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fb37d618070
Code: 00 00 48 c7 c2 b8 ff ff ff f7 d8 64 89 02 b8 ff ff ff ff eb d4 e8 10 2c 00 00 80 3d 31 f0 07 00 00 74 17 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 48 c3 0f 1f 80 00 00 00 00 48 83 ec 18 89 7c
RSP: 002b:00007ffcd4a525d8 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fb37d618070
RDX: 0000000000000010 RSI: 00000000200001c0 RDI: 0000000000000004
RBP: 0000000000000000 R08: 0000000100000000 R09: 0000000100000000
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Use sk_psock, which will only check that the pointer is not been set to
NULL yet, which should only happen after the callbacks are restored. If,
then, a reference can still be gotten, we may call sk_psock_stop and cancel
psock->work.
As suggested by Paolo Abeni, reorder the condition so the control flow is
less convoluted.
After that change, the reproducer does not trigger the WARN_ON_ONCE
anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memory-failure: fix handling of dissolved but not taken off from buddy pages
When I did memory failure tests recently, below panic occurs:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
raw: 06fffe0000000000 dead000000000100 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(!PageBuddy(page))
------------[ cut here ]------------
kernel BUG at include/linux/page-flags.h:1009!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:__del_page_from_free_list+0x151/0x180
RSP: 0018:ffffa49c90437998 EFLAGS: 00000046
RAX: 0000000000000035 RBX: 0000000000000009 RCX: ffff8dd8dfd1c9c8
RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff8dd8dfd1c9c0
RBP: ffffd901233b8000 R08: ffffffffab5511f8 R09: 0000000000008c69
R10: 0000000000003c15 R11: ffffffffab5511f8 R12: ffff8dd8fffc0c80
R13: 0000000000000001 R14: ffff8dd8fffc0c80 R15: 0000000000000009
FS: 00007ff916304740(0000) GS:ffff8dd8dfd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055eae50124c8 CR3: 00000008479e0000 CR4: 00000000000006f0
Call Trace:
<TASK>
__rmqueue_pcplist+0x23b/0x520
get_page_from_freelist+0x26b/0xe40
__alloc_pages_noprof+0x113/0x1120
__folio_alloc_noprof+0x11/0xb0
alloc_buddy_hugetlb_folio.isra.0+0x5a/0x130
__alloc_fresh_hugetlb_folio+0xe7/0x140
alloc_pool_huge_folio+0x68/0x100
set_max_huge_pages+0x13d/0x340
hugetlb_sysctl_handler_common+0xe8/0x110
proc_sys_call_handler+0x194/0x280
vfs_write+0x387/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff916114887
RSP: 002b:00007ffec8a2fd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000055eae500e350 RCX: 00007ff916114887
RDX: 0000000000000004 RSI: 000055eae500e390 RDI: 0000000000000003
RBP: 000055eae50104c0 R08: 0000000000000000 R09: 000055eae50104c0
R10: 0000000000000077 R11: 0000000000000246 R12: 0000000000000004
R13: 0000000000000004 R14: 00007ff916216b80 R15: 00007ff916216a00
</TASK>
Modules linked in: mce_inject hwpoison_inject
---[ end trace 0000000000000000 ]---
And before the panic, there had an warning about bad page state:
BUG: Bad page state in process page-types pfn:8cee00
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
page_type: 0xffffff7f(buddy)
raw: 06fffe0000000000 ffffd901241c0008 ffffd901240f8008 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffff7f 0000000000000000
page dumped because: nonzero mapcount
Modules linked in: mce_inject hwpoison_inject
CPU: 8 PID: 154211 Comm: page-types Not tainted 6.9.0-rc4-00499-g5544ec3178e2-dirty #22
Call Trace:
<TASK>
dump_stack_lvl+0x83/0xa0
bad_page+0x63/0xf0
free_unref_page+0x36e/0x5c0
unpoison_memory+0x50b/0x630
simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110
debugfs_attr_write+0x42/0x60
full_proxy_write+0x5b/0x80
vfs_write+0xcd/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f189a514887
RSP: 002b:00007ffdcd899718 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f189a514887
RDX: 0000000000000009 RSI: 00007ffdcd899730 RDI: 0000000000000003
RBP: 00007ffdcd8997a0 R08: 0000000000000000 R09: 00007ffdcd8994b2
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcda199a8
R13: 0000000000404af1 R14: 000000000040ad78 R15: 00007f189a7a5040
</TASK>
The root cause should be the below race:
memory_failure
try_memory_failure_hugetlb
me_huge_page
__page_handle_poison
dissolve_free_hugetlb_folio
drain_all_pages -- Buddy page can be isolated e.g. for compaction.
take_page_off_buddy -- Failed as page is not in the
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Fix race between aio_cancel() and AIO request complete
FFS based applications can utilize the aio_cancel() callback to dequeue
pending USB requests submitted to the UDC. There is a scenario where the
FFS application issues an AIO cancel call, while the UDC is handling a
soft disconnect. For a DWC3 based implementation, the callstack looks
like the following:
DWC3 Gadget FFS Application
dwc3_gadget_soft_disconnect() ...
--> dwc3_stop_active_transfers()
--> dwc3_gadget_giveback(-ESHUTDOWN)
--> ffs_epfile_async_io_complete() ffs_aio_cancel()
--> usb_ep_free_request() --> usb_ep_dequeue()
There is currently no locking implemented between the AIO completion
handler and AIO cancel, so the issue occurs if the completion routine is
running in parallel to an AIO cancel call coming from the FFS application.
As the completion call frees the USB request (io_data->req) the FFS
application is also referencing it for the usb_ep_dequeue() call. This can
lead to accessing a stale/hanging pointer.
commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently")
relocated the usb_ep_free_request() into ffs_epfile_async_io_complete().
However, in order to properly implement locking to mitigate this issue, the
spinlock can't be added to ffs_epfile_async_io_complete(), as
usb_ep_dequeue() (if successfully dequeuing a USB request) will call the
function driver's completion handler in the same context. Hence, leading
into a deadlock.
Fix this issue by moving the usb_ep_free_request() back to
ffs_user_copy_worker(), and ensuring that it explicitly sets io_data->req
to NULL after freeing it within the ffs->eps_lock. This resolves the race
condition above, as the ffs_aio_cancel() routine will not continue
attempting to dequeue a request that has already been freed, or the
ffs_user_copy_work() not freeing the USB request until the AIO cancel is
done referencing it.
This fix depends on
commit b566d38857fc ("usb: gadget: f_fs: use io_data->status
consistently") |