| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix memory leak with CONFIG_DEBUG_OBJECTS=y
After a pci_doe_task completes, its work_struct needs to be destroyed
to avoid a memory leak with CONFIG_DEBUG_OBJECTS=y. |
| In the Linux kernel, the following vulnerability has been resolved:
ionic: remove WARN_ON to prevent panic_on_warn
Remove unnecessary early code development check and the WARN_ON
that it uses. The irq alloc and free paths have long been
cleaned up and this check shouldn't have stuck around so long. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: of: fix double-free on unregistration
Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal
zone parameters structure"), thermal_zone_device_register() allocates
a copy of the tzp argument and frees it when unregistering, so
thermal_of_zone_register() now ends up leaking its original tzp and
double-freeing the tzp copy. Fix this by locating tzp on stack instead. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: virtio - Fix race on data_avail and actual data
The virtio rng device kicks off a new entropy request whenever the
data available reaches zero. When a new request occurs at the end
of a read operation, that is, when the result of that request is
only needed by the next reader, then there is a race between the
writing of the new data and the next reader.
This is because there is no synchronisation whatsoever between the
writer and the reader.
Fix this by writing data_avail with smp_store_release and reading
it with smp_load_acquire when we first enter read. The subsequent
reads are safe because they're either protected by the first load
acquire, or by the completion mechanism.
Also remove the redundant zeroing of data_idx in random_recv_done
(data_idx must already be zero at this point) and data_avail in
request_entropy (ditto). |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix slab-out-of-bounds read in hdr_delete_de()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631
Call Trace:
memmove+0x25/0x60 mm/kasan/shadow.c:54
hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193
ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910
ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712
ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276
Before using the meta-data in struct INDEX_HDR, we need to
check index header valid or not. Otherwise, the corruptedi
(or malicious) fs image can cause out-of-bounds access which
could make kernel panic. |
| In the Linux kernel, the following vulnerability has been resolved:
SMB3: Add missing locks to protect deferred close file list
cifs_del_deferred_close function has a critical section which modifies
the deferred close file list. We must acquire deferred_lock before
calling cifs_del_deferred_close function. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: cadence: cdns_i2c_master_xfer(): Fix runtime PM leak on error path
The cdns_i2c_master_xfer() function gets a runtime PM reference when the
function is entered. This reference is released when the function is
exited. There is currently one error path where the function exits
directly, which leads to a leak of the runtime PM reference.
Make sure that this error path also releases the runtime PM reference. |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Fix locking for runpm vs reclaim
For cases where icc_bw_set() can be called in callbaths that could
deadlock against shrinker/reclaim, such as runpm resume, we need to
decouple the icc locking. Introduce a new icc_bw_lock for cases where
we need to serialize bw aggregation and update to decouple that from
paths that require memory allocation such as node/link creation/
destruction.
Fixes this lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.2.0-rc8-debug+ #554 Not tainted
------------------------------------------------------
ring0/132 is trying to acquire lock:
ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234
but task is already holding lock:
ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (dma_fence_map){++++}-{0:0}:
__dma_fence_might_wait+0x74/0xc0
dma_resv_lockdep+0x1f4/0x2f4
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x80/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
topology_parse_cpu_capacity+0x8c/0x178
get_cpu_for_node+0x88/0xc4
parse_cluster+0x1b0/0x28c
parse_cluster+0x8c/0x28c
init_cpu_topology+0x168/0x188
smp_prepare_cpus+0x24/0xf8
kernel_init_freeable+0x18c/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #2 (fs_reclaim){+.+.}-{0:0}:
__fs_reclaim_acquire+0x3c/0x48
fs_reclaim_acquire+0x54/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
kzalloc.constprop.0+0x14/0x20
icc_node_create_nolock+0x4c/0xc4
icc_node_create+0x38/0x58
qcom_icc_rpmh_probe+0x1b8/0x248
platform_probe+0x70/0xc4
really_probe+0x158/0x290
__driver_probe_device+0xc8/0xe0
driver_probe_device+0x44/0x100
__driver_attach+0xf8/0x108
bus_for_each_dev+0x78/0xc4
driver_attach+0x2c/0x38
bus_add_driver+0xd0/0x1d8
driver_register+0xbc/0xf8
__platform_driver_register+0x30/0x3c
qnoc_driver_init+0x24/0x30
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #1 (icc_lock){+.+.}-{3:3}:
__mutex_lock+0xcc/0x3c8
mutex_lock_nested+0x30/0x44
icc_set_bw+0x88/0x2b4
_set_opp_bw+0x8c/0xd8
_set_opp+0x19c/0x300
dev_pm_opp_set_opp+0x84/0x94
a6xx_gmu_resume+0x18c/0x804
a6xx_pm_resume+0xf8/0x234
adreno_runtime_resume+0x2c/0x38
pm_generic_runtime_resume+0x30/0x44
__rpm_callback+0x15c/0x174
rpm_callback+0x78/0x7c
rpm_resume+0x318/0x524
__pm_runtime_resume+0x78/0xbc
adreno_load_gpu+0xc4/0x17c
msm_open+0x50/0x120
drm_file_alloc+0x17c/0x228
drm_open_helper+0x74/0x118
drm_open+0xa0/0x144
drm_stub_open+0xd4/0xe4
chrdev_open+0x1b8/0x1e4
do_dentry_open+0x2f8/0x38c
vfs_open+0x34/0x40
path_openat+0x64c/0x7b4
do_filp_open+0x54/0xc4
do_sys_openat2+0x9c/0x100
do_sys_open+0x50/0x7c
__arm64_sys_openat+0x28/0x34
invoke_syscall+0x8c/0x128
el0_svc_common.constprop.0+0xa0/0x11c
do_el0_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix the error "trying to register non-static key in rxe_cleanup_task"
In the function rxe_create_qp(), rxe_qp_from_init() is called to
initialize qp, internally things like rxe_init_task are not setup until
rxe_qp_init_req().
If an error occurred before this point then the unwind will call
rxe_cleanup() and eventually to rxe_qp_do_cleanup()/rxe_cleanup_task()
which will oops when trying to access the uninitialized spinlock.
If rxe_init_task is not executed, rxe_cleanup_task will not be called. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix iwl_mvm_max_amsdu_size() for MLO
For MLO, we cannot use vif->bss_conf.chandef.chan->band, since
that will lead to a NULL-ptr dereference as bss_conf isn't used.
However, in case of real MLO, we also need to take both LMACs
into account if they exist, since the station might be active
on both LMACs at the same time. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix underflow in chain reference counter
Set element addition error path decrements reference counter on chains
twice: once on element release and again via nft_data_release().
Then, d6b478666ffa ("netfilter: nf_tables: fix underflow in object
reference counter") incorrectly fixed this by removing the stateful
object reference count decrement.
Restore the stateful object decrement as in b91d90368837 ("netfilter:
nf_tables: fix leaking object reference count") and let
nft_data_release() decrement the chain reference counter, so this is
done only once. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix VAS mm use after free
The refcount on mm is dropped before the coprocessor is detached. |
| In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: core: Prevent invalid memory access when there is no parent
Commit 813665564b3d ("iio: core: Convert to use firmware node handle
instead of OF node") switched the kind of nodes to use for label
retrieval in device registration. Probably an unwanted change in that
commit was that if the device has no parent then NULL pointer is
accessed. This is what happens in the stock IIO dummy driver when a
new entry is created in configfs:
# mkdir /sys/kernel/config/iio/devices/dummy/foo
BUG: kernel NULL pointer dereference, address: ...
...
Call Trace:
__iio_device_register
iio_dummy_probe
Since there seems to be no reason to make a parent device of an IIO
dummy device mandatory, let’s prevent the invalid memory access in
__iio_device_register when the parent device is NULL. With this
change, the IIO dummy driver works fine with configfs. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: don't overflow multishot recv
Don't allow overflowing multishot recv CQEs, it might get out of
hand, hurt performance, and in the worst case scenario OOM the task. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: Add queue index attr to vdpa_nl_policy for nlattr length check
The vdpa_nl_policy structure is used to validate the nlattr when parsing
the incoming nlmsg. It will ensure the attribute being described produces
a valid nlattr pointer in info->attrs before entering into each handler
in vdpa_nl_ops.
That is to say, the missing part in vdpa_nl_policy may lead to illegal
nlattr after parsing, which could lead to OOB read just like CVE-2023-3773.
This patch adds the missing nla_policy for vdpa queue index attr to avoid
such bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Make sure to zero vfio_iommu_type1_info before copying to user
Missed a zero initialization here. Most of the struct is filled with
a copy_from_user(), however minsz for that copy is smaller than the
actual struct by 8 bytes, thus we don't fill the padding. |