| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Incorrect access control in the realtime.cgi endpoint of Deep Sea Electronics devices DSE855 v1.1.0 to v1.1.26 allows attackers to gain access to the admin panel and complete control of the device. |
| The List category posts plugin for WordPress is vulnerable to Information Exposure in all versions up to, and including, 0.92.0 via the 'catlist' shortcode due to insufficient restrictions on which posts can be included. This makes it possible for authenticated attackers, with contributor-level access and above, to extract data from password protected, private, or draft posts that they should not have access to. |
| The Analytify Pro plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 7.0.3 via the Analytify Tag HTML details. This makes it possible for unauthenticated attackers to extract usernames from source code. While we generally do not assign CVE IDs to username exposure issues, this vendor has specifically requested we consider it a vulnerability. |
| The WP Discourse plugin for WordPress is vulnerable to Information Exposure in all versions up to, and including, 2.5.9. This is due to the plugin unconditionally sending Discourse API credentials (Api-Key and Api-Username headers) to any host specified in a post's discourse_permalink custom field during comment synchronization. This makes it possible for authenticated attackers, with author-level access and above, to exfiltrate sensitive Discourse API credentials to attacker-controlled servers, as well as query internal services and potentially perform further attacks. |
| A privacy issue was addressed by moving sensitive data. This issue is fixed in macOS Sonoma 14.8. An app may be able to access protected user data. |
| The issue was addressed with improved checks. This issue is fixed in iOS 26 and iPadOS 26, iOS 18.7 and iPadOS 18.7. An app may be able to monitor keystrokes without user permission. |
| In PHP versions 8.1.* before 8.1.31, 8.2.* before 8.2.26, 8.3.* before 8.3.14, a hostile MySQL server can cause the client to disclose the content of its heap containing data from other SQL requests and possible other data belonging to different users of the same server. |
| Issue summary: Calling the OpenSSL API function SSL_select_next_proto with an
empty supported client protocols buffer may cause a crash or memory contents to
be sent to the peer.
Impact summary: A buffer overread can have a range of potential consequences
such as unexpected application beahviour or a crash. In particular this issue
could result in up to 255 bytes of arbitrary private data from memory being sent
to the peer leading to a loss of confidentiality. However, only applications
that directly call the SSL_select_next_proto function with a 0 length list of
supported client protocols are affected by this issue. This would normally never
be a valid scenario and is typically not under attacker control but may occur by
accident in the case of a configuration or programming error in the calling
application.
The OpenSSL API function SSL_select_next_proto is typically used by TLS
applications that support ALPN (Application Layer Protocol Negotiation) or NPN
(Next Protocol Negotiation). NPN is older, was never standardised and
is deprecated in favour of ALPN. We believe that ALPN is significantly more
widely deployed than NPN. The SSL_select_next_proto function accepts a list of
protocols from the server and a list of protocols from the client and returns
the first protocol that appears in the server list that also appears in the
client list. In the case of no overlap between the two lists it returns the
first item in the client list. In either case it will signal whether an overlap
between the two lists was found. In the case where SSL_select_next_proto is
called with a zero length client list it fails to notice this condition and
returns the memory immediately following the client list pointer (and reports
that there was no overlap in the lists).
This function is typically called from a server side application callback for
ALPN or a client side application callback for NPN. In the case of ALPN the list
of protocols supplied by the client is guaranteed by libssl to never be zero in
length. The list of server protocols comes from the application and should never
normally be expected to be of zero length. In this case if the
SSL_select_next_proto function has been called as expected (with the list
supplied by the client passed in the client/client_len parameters), then the
application will not be vulnerable to this issue. If the application has
accidentally been configured with a zero length server list, and has
accidentally passed that zero length server list in the client/client_len
parameters, and has additionally failed to correctly handle a "no overlap"
response (which would normally result in a handshake failure in ALPN) then it
will be vulnerable to this problem.
In the case of NPN, the protocol permits the client to opportunistically select
a protocol when there is no overlap. OpenSSL returns the first client protocol
in the no overlap case in support of this. The list of client protocols comes
from the application and should never normally be expected to be of zero length.
However if the SSL_select_next_proto function is accidentally called with a
client_len of 0 then an invalid memory pointer will be returned instead. If the
application uses this output as the opportunistic protocol then the loss of
confidentiality will occur.
This issue has been assessed as Low severity because applications are most
likely to be vulnerable if they are using NPN instead of ALPN - but NPN is not
widely used. It also requires an application configuration or programming error.
Finally, this issue would not typically be under attacker control making active
exploitation unlikely.
The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.
Due to the low severity of this issue we are not issuing new releases of
OpenSSL at this time. The fix will be included in the next releases when they
become available. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: usbtmc: prevent kernel-usb-infoleak
The syzbot reported a kernel-usb-infoleak in usbtmc_write,
we need to clear the structure before filling fields. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dpaa: Pad packets to ETH_ZLEN
When sending packets under 60 bytes, up to three bytes of the buffer
following the data may be leaked. Avoid this by extending all packets to
ETH_ZLEN, ensuring nothing is leaked in the padding. This bug can be
reproduced by running
$ ping -s 11 destination |
| In the Linux kernel, the following vulnerability has been resolved:
x86/tdx: Fix data leak in mmio_read()
The mmio_read() function makes a TDVMCALL to retrieve MMIO data for an
address from the VMM.
Sean noticed that mmio_read() unintentionally exposes the value of an
initialized variable (val) on the stack to the VMM.
This variable is only needed as an output value. It did not need to be
passed to the VMM in the first place.
Do not send the original value of *val to the VMM.
[ dhansen: clarify what 'val' is used for. ] |
| Exposure of sensitive information due to incompatible policies issue exists in Pgpool-II. If a database user accesses a query cache, table data unauthorized for the user may be retrieved. |
| This issue was addressed through improved state management. This issue is fixed in macOS Ventura 13.7.5, tvOS 18.4, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to access sensitive user data. |
| The issue was addressed with improved restriction of data container access. This issue is fixed in macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, tvOS 18.4, macOS Sequoia 15.4. An app may be able to access sensitive user data. |
| The issue was addressed with improved restriction of data container access. This issue is fixed in iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4. An app may be able to access sensitive user data. |
| The issue was addressed with improved checks. This issue is fixed in macOS Sequoia 15.4, macOS Sonoma 14.7.5. A malicious app may be able to access private information. |
| A path handling issue was addressed with improved validation. This issue is fixed in macOS Sonoma 14.7.5, iOS 18.4 and iPadOS 18.4, tvOS 18.4, macOS Sequoia 15.4. A malicious app may be able to access private information. |
| This issue was addressed with improved redaction of sensitive information. This issue is fixed in macOS Sequoia 15.4. An app may be able to access sensitive user data. |
| The issue was resolved by sanitizing logging This issue is fixed in visionOS 2.4, macOS Ventura 13.7.5, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to access sensitive user data. |
| A privacy issue was addressed by removing the vulnerable code. This issue is fixed in macOS Ventura 13.7.5, macOS Sequoia 15.4, macOS Sonoma 14.7.5. An app may be able to access user-sensitive data. |