| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent bpf program recursion for raw tracepoint probes
We got report from sysbot [1] about warnings that were caused by
bpf program attached to contention_begin raw tracepoint triggering
the same tracepoint by using bpf_trace_printk helper that takes
trace_printk_lock lock.
Call Trace:
<TASK>
? trace_event_raw_event_bpf_trace_printk+0x5f/0x90
bpf_trace_printk+0x2b/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
bpf_trace_printk+0x3f/0xe0
bpf_prog_a9aec6167c091eef_prog+0x1f/0x24
bpf_trace_run2+0x26/0x90
native_queued_spin_lock_slowpath+0x1c6/0x2b0
_raw_spin_lock_irqsave+0x44/0x50
__unfreeze_partials+0x5b/0x160
...
The can be reproduced by attaching bpf program as raw tracepoint on
contention_begin tracepoint. The bpf prog calls bpf_trace_printk
helper. Then by running perf bench the spin lock code is forced to
take slow path and call contention_begin tracepoint.
Fixing this by skipping execution of the bpf program if it's
already running, Using bpf prog 'active' field, which is being
currently used by trampoline programs for the same reason.
Moving bpf_prog_inc_misses_counter to syscall.c because
trampoline.c is compiled in just for CONFIG_BPF_JIT option.
[1] https://lore.kernel.org/bpf/YxhFe3EwqchC%2FfYf@krava/T/#t |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: Bounds-check struct nlmsgerr creation
In preparation for FORTIFY_SOURCE doing bounds-check on memcpy(),
switch from __nlmsg_put to nlmsg_put(), and explain the bounds check
for dealing with the memcpy() across a composite flexible array struct.
Avoids this future run-time warning:
memcpy: detected field-spanning write (size 32) of single field "&errmsg->msg" at net/netlink/af_netlink.c:2447 (size 16) |
| In the Linux kernel, the following vulnerability has been resolved:
9p/trans_fd: always use O_NONBLOCK read/write
syzbot is reporting hung task at p9_fd_close() [1], for p9_mux_poll_stop()
from p9_conn_destroy() from p9_fd_close() is failing to interrupt already
started kernel_read() from p9_fd_read() from p9_read_work() and/or
kernel_write() from p9_fd_write() from p9_write_work() requests.
Since p9_socket_open() sets O_NONBLOCK flag, p9_mux_poll_stop() does not
need to interrupt kernel_read()/kernel_write(). However, since p9_fd_open()
does not set O_NONBLOCK flag, but pipe blocks unless signal is pending,
p9_mux_poll_stop() needs to interrupt kernel_read()/kernel_write() when
the file descriptor refers to a pipe. In other words, pipe file descriptor
needs to be handled as if socket file descriptor.
We somehow need to interrupt kernel_read()/kernel_write() on pipes.
A minimal change, which this patch is doing, is to set O_NONBLOCK flag
from p9_fd_open(), for O_NONBLOCK flag does not affect reading/writing
of regular files. But this approach changes O_NONBLOCK flag on userspace-
supplied file descriptors (which might break userspace programs), and
O_NONBLOCK flag could be changed by userspace. It would be possible to set
O_NONBLOCK flag every time p9_fd_read()/p9_fd_write() is invoked, but still
remains small race window for clearing O_NONBLOCK flag.
If we don't want to manipulate O_NONBLOCK flag, we might be able to
surround kernel_read()/kernel_write() with set_thread_flag(TIF_SIGPENDING)
and recalc_sigpending(). Since p9_read_work()/p9_write_work() works are
processed by kernel threads which process global system_wq workqueue,
signals could not be delivered from remote threads when p9_mux_poll_stop()
from p9_conn_destroy() from p9_fd_close() is called. Therefore, calling
set_thread_flag(TIF_SIGPENDING)/recalc_sigpending() every time would be
needed if we count on signals for making kernel_read()/kernel_write()
non-blocking.
[Dominique: add comment at Christian's suggestion] |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Check sb_bsize_shift after reading superblock
Fuzzers like to scribble over sb_bsize_shift but in reality it's very
unlikely that this field would be corrupted on its own. Nevertheless it
should be checked to avoid the possibility of messy mount errors due to
bad calculations. It's always a fixed value based on the block size so
we can just check that it's the expected value.
Tested with:
mkfs.gfs2 -O -p lock_nolock /dev/vdb
for i in 0 -1 64 65 32 33; do
gfs2_edit -p sb field sb_bsize_shift $i /dev/vdb
mount /dev/vdb /mnt/test && umount /mnt/test
done
Before this patch we get a withdraw after
[ 76.413681] gfs2: fsid=loop0.0: fatal: invalid metadata block
[ 76.413681] bh = 19 (type: exp=5, found=4)
[ 76.413681] function = gfs2_meta_buffer, file = fs/gfs2/meta_io.c, line = 492
and with UBSAN configured we also get complaints like
[ 76.373395] UBSAN: shift-out-of-bounds in fs/gfs2/ops_fstype.c:295:19
[ 76.373815] shift exponent 4294967287 is too large for 64-bit type 'long unsigned int'
After the patch, these complaints don't appear, mount fails immediately
and we get an explanation in dmesg. |
| A memory disclosure vulnerability was found in PostgreSQL that allows remote users to access sensitive information by exploiting certain aggregate function calls with 'unknown'-type arguments. Handling 'unknown'-type values from string literals without type designation can disclose bytes, potentially revealing notable and confidential information. This issue exists due to excessive data output in aggregate function calls, enabling remote users to read some portion of system memory. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vma: add give_up_on_oom option on modify/merge, use in uffd release
Currently, if a VMA merge fails due to an OOM condition arising on commit
merge or a failure to duplicate anon_vma's, we report this so the caller
can handle it.
However there are cases where the caller is only ostensibly trying a
merge, and doesn't mind if it fails due to this condition.
Since we do not want to introduce an implicit assumption that we only
actually modify VMAs after OOM conditions might arise, add a 'give up on
oom' option and make an explicit contract that, should this flag be set, we
absolutely will not modify any VMAs should OOM arise and just bail out.
Since it'd be very unusual for a user to try to vma_modify() with this flag
set but be specifying a range within a VMA which ends up being split (which
can fail due to rlimit issues, not only OOM), we add a debug warning for
this condition.
The motivating reason for this is uffd release - syzkaller (and Pedro
Falcato's VERY astute analysis) found a way in which an injected fault on
allocation, triggering an OOM condition on commit merge, would result in
uffd code becoming confused and treating an error value as if it were a VMA
pointer.
To avoid this, we make use of this new VMG flag to ensure that this never
occurs, utilising the fact that, should we be clearing entire VMAs, we do
not wish an OOM event to be reported to us.
Many thanks to Pedro Falcato for his excellent analysis and Jann Horn for
his insightful and intelligent analysis of the situation, both of whom were
instrumental in this fix. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/virtio: Fix missed dmabuf unpinning in error path of prepare_fb()
Correct error handling in prepare_fb() to fix leaking resources when
error happens. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: allow SC_STATUS_FREEABLE when searching via nfs4_lookup_stateid()
The pynfs DELEG8 test fails when run against nfsd. It acquires a
delegation and then lets the lease time out. It then tries to use the
deleg stateid and expects to see NFS4ERR_DELEG_REVOKED, but it gets
bad NFS4ERR_BAD_STATEID instead.
When a delegation is revoked, it's initially marked with
SC_STATUS_REVOKED, or SC_STATUS_ADMIN_REVOKED and later, it's marked
with the SC_STATUS_FREEABLE flag, which denotes that it is waiting for
s FREE_STATEID call.
nfs4_lookup_stateid() accepts a statusmask that includes the status
flags that a found stateid is allowed to have. Currently, that mask
never includes SC_STATUS_FREEABLE, which means that revoked delegations
are (almost) never found.
Add SC_STATUS_FREEABLE to the always-allowed status flags, and remove it
from nfsd4_delegreturn() since it's now always implied. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: simple-card-utils: Don't use __free(device_node) at graph_util_parse_dai()
commit 419d1918105e ("ASoC: simple-card-utils: use __free(device_node) for
device node") uses __free(device_node) for dlc->of_node, but we need to
keep it while driver is in use.
Don't use __free(device_node) in graph_util_parse_dai(). |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: wait barrier before returning discard request with REQ_NOWAIT
raid10_handle_discard should wait barrier before returning a discard bio
which has REQ_NOWAIT. And there is no need to print warning calltrace
if a discard bio has REQ_NOWAIT flag. Quality engineer usually checks
dmesg and reports error if dmesg has warning/error calltrace. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/huc: Fix fence not released on early probe errors
HuC delayed loading fence, introduced with commit 27536e03271da
("drm/i915/huc: track delayed HuC load with a fence"), is registered with
object tracker early on driver probe but unregistered only from driver
remove, which is not called on early probe errors. Since its memory is
allocated under devres, then released anyway, it may happen to be
allocated again to the fence and reused on future driver probes, resulting
in kernel warnings that taint the kernel:
<4> [309.731371] ------------[ cut here ]------------
<3> [309.731373] ODEBUG: init destroyed (active state 0) object: ffff88813d7dd2e0 object type: i915_sw_fence hint: sw_fence_dummy_notify+0x0/0x20 [i915]
<4> [309.731575] WARNING: CPU: 2 PID: 3161 at lib/debugobjects.c:612 debug_print_object+0x93/0xf0
...
<4> [309.731693] CPU: 2 UID: 0 PID: 3161 Comm: i915_module_loa Tainted: G U 6.14.0-CI_DRM_16362-gf0fd77956987+ #1
...
<4> [309.731700] RIP: 0010:debug_print_object+0x93/0xf0
...
<4> [309.731728] Call Trace:
<4> [309.731730] <TASK>
...
<4> [309.731949] __debug_object_init+0x17b/0x1c0
<4> [309.731957] debug_object_init+0x34/0x50
<4> [309.732126] __i915_sw_fence_init+0x34/0x60 [i915]
<4> [309.732256] intel_huc_init_early+0x4b/0x1d0 [i915]
<4> [309.732468] intel_uc_init_early+0x61/0x680 [i915]
<4> [309.732667] intel_gt_common_init_early+0x105/0x130 [i915]
<4> [309.732804] intel_root_gt_init_early+0x63/0x80 [i915]
<4> [309.732938] i915_driver_probe+0x1fa/0xeb0 [i915]
<4> [309.733075] i915_pci_probe+0xe6/0x220 [i915]
<4> [309.733198] local_pci_probe+0x44/0xb0
<4> [309.733203] pci_device_probe+0xf4/0x270
<4> [309.733209] really_probe+0xee/0x3c0
<4> [309.733215] __driver_probe_device+0x8c/0x180
<4> [309.733219] driver_probe_device+0x24/0xd0
<4> [309.733223] __driver_attach+0x10f/0x220
<4> [309.733230] bus_for_each_dev+0x7d/0xe0
<4> [309.733236] driver_attach+0x1e/0x30
<4> [309.733239] bus_add_driver+0x151/0x290
<4> [309.733244] driver_register+0x5e/0x130
<4> [309.733247] __pci_register_driver+0x7d/0x90
<4> [309.733251] i915_pci_register_driver+0x23/0x30 [i915]
<4> [309.733413] i915_init+0x34/0x120 [i915]
<4> [309.733655] do_one_initcall+0x62/0x3f0
<4> [309.733667] do_init_module+0x97/0x2a0
<4> [309.733671] load_module+0x25ff/0x2890
<4> [309.733688] init_module_from_file+0x97/0xe0
<4> [309.733701] idempotent_init_module+0x118/0x330
<4> [309.733711] __x64_sys_finit_module+0x77/0x100
<4> [309.733715] x64_sys_call+0x1f37/0x2650
<4> [309.733719] do_syscall_64+0x91/0x180
<4> [309.733763] entry_SYSCALL_64_after_hwframe+0x76/0x7e
<4> [309.733792] </TASK>
...
<4> [309.733806] ---[ end trace 0000000000000000 ]---
That scenario is most easily reproducible with
igt@i915_module_load@reload-with-fault-injection.
Fix the issue by moving the cleanup step to driver release path.
(cherry picked from commit 795dbde92fe5c6996a02a5b579481de73035e7bf) |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/system/tool/traceroute.php. |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/system/basic/mgmt_edit.php. |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/audit/newstatistics/mon_stat_top10.php. |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/audit/newstatistics/mon_stat_hist.php. |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L, <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/system/basic/license_update.php. |
| An improper input validation flaw was found in the eBPF subsystem in the Linux kernel. The issue occurs due to a lack of proper validation of dynamic pointers within user-supplied eBPF programs prior to executing them. This may allow an attacker with CAP_BPF privileges to escalate privileges and execute arbitrary code in the context of the kernel. |
| DCME-320 <=7.4.12.90, DCME-520 <=9.25.5.11, DCME-320-L <=9.3.5.26, and DCME-720 <=9.1.5.11 are vulnerable to Remote Code Execution via /function/audit/newstatistics/mon_stat_hist_new.php. |
| In the Linux kernel, the following vulnerability has been resolved:
codel: remove sch->q.qlen check before qdisc_tree_reduce_backlog()
After making all ->qlen_notify() callbacks idempotent, now it is safe to
remove the check of qlen!=0 from both fq_codel_dequeue() and
codel_qdisc_dequeue(). |
| A vulnerability was found in IROAD Dash Cam FX2 up to 20250308. It has been classified as problematic. Affected is an unknown function of the file /mnt/extsd/event/ of the component HTTP/RTSP. The manipulation leads to information disclosure. The attack needs to be initiated within the local network. The exploit has been disclosed to the public and may be used. |