| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Adobe Flash Player versions 26.0.0.137 and earlier have an exploitable type confusion vulnerability when parsing SWF files. Successful exploitation could lead to arbitrary code execution. |
| Microsoft Edge in Microsoft Windows 10 Gold, 1511, 1607, 1703, 1709, and Windows Server 2016 allows an attacker to execute arbitrary code in the context of the current user, due to how Microsoft Edge handles objects in memory, aka "Microsoft Edge Memory Corruption Vulnerability". |
| A remote code execution vulnerability exists in the way affected Microsoft scripting engines render when handling objects in memory in Microsoft browsers. These vulnerabilities could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. If the current user is logged on with administrative user rights, an attacker who successfully exploited the vulnerability could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. This vulnerability is different from those described in CVE-2017-0010, CVE-2017-0032, CVE-2017-0035, CVE-2017-0067, CVE-2017-0070, CVE-2017-0071, CVE-2017-0094, CVE-2017-0131, CVE-2017-0132, CVE-2017-0133, CVE-2017-0134, CVE-2017-0136, CVE-2017-0137, CVE-2017-0138, CVE-2017-0141, CVE-2017-0150, and CVE-2017-0151. |
| Adobe Flash Player versions 26.0.0.131 and earlier have an exploitable memory corruption vulnerability in the Action Script 2 BitmapData class. Successful exploitation could lead to memory address disclosure. |
| Adobe Flash Player versions 26.0.0.131 and earlier have an exploitable memory corruption vulnerability in the Action Script 3 raster data model. Successful exploitation could lead to arbitrary code execution. |
| Internet Explorer in Microsoft Windows 7 SP1, Windows Server 2008 SP2 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, and Windows 10 Gold, 1511, 1607, 1703, 1709, and Windows Server 2016 allows an attacker to obtain information to further compromise the user's system, due to how Internet Explorer handle objects in memory, aka "Scripting Engine Information Disclosure Vulnerability". This CVE ID is unique from CVE-2017-11906 and CVE-2017-11919. |
| Microsoft Windows 10 Gold, 1511, and 1607; Windows 8.1; Windows RT 8.1; Windows Server 2012 R2, and Windows Server 2016 do not properly handle certain requests in SMBv2 and SMBv3 packets, which allows remote attackers to execute arbitrary code via a crafted SMBv2 or SMBv3 packet to the Server service, aka "SMBv2/SMBv3 Null Dereference Denial of Service Vulnerability." |
| Adobe Flash Player versions 25.0.0.171 and earlier have an exploitable memory corruption vulnerability in the PNG image parser. Successful exploitation could lead to arbitrary code execution. |
| Microsoft Windows 10 1607 and 1703, and Windows Server 2016 allow an authenticated attacker to modify the C:\Users\DEFAULT folder structure, aka "Windows Default Folder Tampering Vulnerability". |
| Adobe Flash Player versions 25.0.0.148 and earlier have an exploitable use after free vulnerability when handling multiple mask properties of display objects, aka memory corruption. Successful exploitation could lead to arbitrary code execution. |
| Adobe Flash Player versions 25.0.0.148 and earlier have an exploitable memory corruption vulnerability in the BlendMode class. Successful exploitation could lead to arbitrary code execution. |
| Adobe Flash Player versions 24.0.0.186 and earlier have an exploitable use after free vulnerability in the ActionScript MovieClip class. Successful exploitation could lead to arbitrary code execution. |
| Adobe Flash Player versions 25.0.0.127 and earlier have an exploitable memory corruption vulnerability when parsing a shape outline. Successful exploitation could lead to arbitrary code execution. |
| Microsoft Windows 7 SP1, Windows Server 2008 and R2 SP1, Windows 8.1 and Windows RT 8.1, Windows Server 2012 and R2, Windows 10 Gold, 1511, 1607, 1703, 1709, and Windows Server 2016 allow an attacker to execute arbitrary code in the context of the current user, due to how Internet Explorer handles objects in memory, aka "Scripting Engine Memory Corruption Vulnerability". This CVE ID is unique from CVE-2017-11889, CVE-2017-11890, CVE-2017-11893, CVE-2017-11894, CVE-2017-11895, CVE-2017-11901, CVE-2017-11903, CVE-2017-11905, CVE-2017-11907, CVE-2017-11908, CVE-2017-11909, CVE-2017-11910, CVE-2017-11911, CVE-2017-11912, CVE-2017-11913, CVE-2017-11914, CVE-2017-11916, CVE-2017-11918, and CVE-2017-11930. |
| The PDF library in Microsoft Edge; Windows 8.1; Windows Server 2012 and R2; Windows RT 8.1; and Windows 10, 1511, and 1607 allows remote attackers to execute arbitrary code via a crafted PDF file, aka "Microsoft PDF Remote Code Execution Vulnerability." |
| Adobe Flash Player versions 25.0.0.127 and earlier have an exploitable use after free vulnerability in ActionScript2 when creating a getter/setter property. Successful exploitation could lead to arbitrary code execution. |
| An elevation of privilege vulnerability exists when Microsoft Windows running on Windows 10, Windows 10 1511, Windows 8.1, Windows RT 8.1, and Windows Server 2012 R2 fails to properly sanitize handles in memory, aka "Windows Elevation of Privilege Vulnerability." |
| Adobe Flash Player versions 25.0.0.127 and earlier have an exploitable memory corruption vulnerability in the ActionScript2 code parser. Successful exploitation could lead to arbitrary code execution. |
| The kernel-mode drivers in Microsoft Windows 10 Gold and 1511 allow local users to gain privileges via a crafted application, aka "Win32k Elevation of Privilege Vulnerability." This vulnerability is different from those described in CVE-2017-0024, CVE-2017-0026, CVE-2017-0056, CVE-2017-0078, CVE-2017-0079, CVE-2017-0080, and CVE-2017-0081. |
| A Win32k information disclosure vulnerability exists in Microsoft Windows when the win32k component improperly provides kernel information. An attacker who successfully exploited the vulnerability could obtain information to further compromise the user's system, aka "Win32k Information Disclosure Vulnerability." |