| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An attacker with local access the to medical office computer can
escalate his Windows user privileges to "NT AUTHORITY\SYSTEM" by
exploiting a race condition in the Elefant Update Service during the
repair or update process. When using the repair function, the service queries the server for a
list of files and their hashes. In addition, instructions to execute
binaries to finalize the repair process are included. The executables are executed as "NT AUTHORITY\SYSTEM" after they are
copied over to the user writable installation folder (C:\Elefant1). This
means that a user can overwrite either "PostESUUpdate.exe" or
"Update_OpenJava.exe" in the time frame after the copy and before the
execution of the final repair step. The overwritten executable is then executed as "NT AUTHORITY\SYSTEM". |
| An attacker with local access the to medical office computer can
escalate his Windows user privileges to "NT AUTHORITY\SYSTEM" by
exploiting a command injection vulnerability in the Elefant Update
Service. The command injection can be exploited by communicating with
the Elefant Update Service which is running as "SYSTEM" via Windows
Named Pipes.The Elefant Software Updater (ESU) consists of two components. An ESU
service which runs as "NT AUTHORITY\SYSTEM" and an ESU tray client
which communicates with the service to update or repair the installation
and is running with user permissions. The communication is implemented
using named pipes. A crafted message of type
"MessageType.SupportServiceInfos" can be sent to the local ESU service
to inject commands, which are then executed as "NT AUTHORITY\SYSTEM". |
| Attackers with local access to the medical office computer can
escalate their Windows user privileges to "NT AUTHORITY\SYSTEM" by
overwriting one of two Elefant service binaries with weak permissions. The default installation directory of Elefant is "C:\Elefant1" which is
writable for all users. In addition, the Elefant installer registers two
Firebird database services which are running as “NT AUTHORITY\SYSTEM”.
Path: C:\Elefant1\Firebird_2\bin\fbserver.exe
Path: C:\Elefant1\Firebird_2\bin\fbguard.exe
Both service binaries are user writable. This means that a local
attacker can rename one of the service binaries, replace the service
executable with a new executable, and then restart the system. Once the
system has rebooted, the new service binary is executed as "NT
AUTHORITY\SYSTEM". |
| An unauthenticated attacker with access to the local network of the
medical office can query an unprotected Fast Healthcare Interoperability
Resources (FHIR) API to get access to sensitive electronic health
records (EHR). |
| An unauthenticated attacker with access to the local network of the
medical office can use known default credentials to gain remote DBA
access to the Elefant Firebird database. The data in the database
includes patient data and login credentials among other sensitive data.
In addition, this enables an attacker to create and overwrite arbitrary
files on the server filesystem with the rights of the Firebird database
("NT AUTHORITY\SYSTEM"). |
| An authenticated attacker with the user/role "Poweruser" can perform an SQL injection by accessing the /class/template_io.php file and supplying malicious GET parameters. The "templates" parameter is vulnerable against blind boolean-based SQL injection attacks. SQL syntax must be injected into the JSON syntax of the templates parameter. |
| matrix-js-sdk is a Matrix messaging protocol Client-Server SDK for JavaScript. matrix-js-sdk before 34.11.0 is vulnerable to client-side path traversal via crafted MXC URIs. A malicious room member can trigger clients based on the matrix-js-sdk to issue arbitrary authenticated GET requests to the client's homeserver. Fixed in matrix-js-sdk 34.11.1. |
| In the Linux kernel, the following vulnerability has been resolved:
security/keys: fix slab-out-of-bounds in key_task_permission
KASAN reports an out of bounds read:
BUG: KASAN: slab-out-of-bounds in __kuid_val include/linux/uidgid.h:36
BUG: KASAN: slab-out-of-bounds in uid_eq include/linux/uidgid.h:63 [inline]
BUG: KASAN: slab-out-of-bounds in key_task_permission+0x394/0x410
security/keys/permission.c:54
Read of size 4 at addr ffff88813c3ab618 by task stress-ng/4362
CPU: 2 PID: 4362 Comm: stress-ng Not tainted 5.10.0-14930-gafbffd6c3ede #15
Call Trace:
__dump_stack lib/dump_stack.c:82 [inline]
dump_stack+0x107/0x167 lib/dump_stack.c:123
print_address_description.constprop.0+0x19/0x170 mm/kasan/report.c:400
__kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560
kasan_report+0x3a/0x50 mm/kasan/report.c:585
__kuid_val include/linux/uidgid.h:36 [inline]
uid_eq include/linux/uidgid.h:63 [inline]
key_task_permission+0x394/0x410 security/keys/permission.c:54
search_nested_keyrings+0x90e/0xe90 security/keys/keyring.c:793
This issue was also reported by syzbot.
It can be reproduced by following these steps(more details [1]):
1. Obtain more than 32 inputs that have similar hashes, which ends with the
pattern '0xxxxxxxe6'.
2. Reboot and add the keys obtained in step 1.
The reproducer demonstrates how this issue happened:
1. In the search_nested_keyrings function, when it iterates through the
slots in a node(below tag ascend_to_node), if the slot pointer is meta
and node->back_pointer != NULL(it means a root), it will proceed to
descend_to_node. However, there is an exception. If node is the root,
and one of the slots points to a shortcut, it will be treated as a
keyring.
2. Whether the ptr is keyring decided by keyring_ptr_is_keyring function.
However, KEYRING_PTR_SUBTYPE is 0x2UL, the same as
ASSOC_ARRAY_PTR_SUBTYPE_MASK.
3. When 32 keys with the similar hashes are added to the tree, the ROOT
has keys with hashes that are not similar (e.g. slot 0) and it splits
NODE A without using a shortcut. When NODE A is filled with keys that
all hashes are xxe6, the keys are similar, NODE A will split with a
shortcut. Finally, it forms the tree as shown below, where slot 6 points
to a shortcut.
NODE A
+------>+---+
ROOT | | 0 | xxe6
+---+ | +---+
xxxx | 0 | shortcut : : xxe6
+---+ | +---+
xxe6 : : | | | xxe6
+---+ | +---+
| 6 |---+ : : xxe6
+---+ +---+
xxe6 : : | f | xxe6
+---+ +---+
xxe6 | f |
+---+
4. As mentioned above, If a slot(slot 6) of the root points to a shortcut,
it may be mistakenly transferred to a key*, leading to a read
out-of-bounds read.
To fix this issue, one should jump to descend_to_node if the ptr is a
shortcut, regardless of whether the node is root or not.
[1] https://lore.kernel.org/linux-kernel/1cfa878e-8c7b-4570-8606-21daf5e13ce7@huaweicloud.com/
[jarkko: tweaked the commit message a bit to have an appropriate closes
tag.] |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: properly validate chunk size in sctp_sf_ootb()
A size validation fix similar to that in Commit 50619dbf8db7 ("sctp: add
size validation when walking chunks") is also required in sctp_sf_ootb()
to address a crash reported by syzbot:
BUG: KMSAN: uninit-value in sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712
sctp_sf_ootb+0x7f5/0xce0 net/sctp/sm_statefuns.c:3712
sctp_do_sm+0x181/0x93d0 net/sctp/sm_sideeffect.c:1166
sctp_endpoint_bh_rcv+0xc38/0xf90 net/sctp/endpointola.c:407
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_rcv+0x3831/0x3b20 net/sctp/input.c:243
sctp4_rcv+0x42/0x50 net/sctp/protocol.c:1159
ip_protocol_deliver_rcu+0xb51/0x13d0 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233 |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when uninstalling driver
When the driver is uninstalled and the VF is disabled concurrently, a
kernel crash occurs. The reason is that the two actions call function
pci_disable_sriov(). The num_VFs is checked to determine whether to
release the corresponding resources. During the second calling, num_VFs
is not 0 and the resource release function is called. However, the
corresponding resource has been released during the first invoking.
Therefore, the problem occurs:
[15277.839633][T50670] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
...
[15278.131557][T50670] Call trace:
[15278.134686][T50670] klist_put+0x28/0x12c
[15278.138682][T50670] klist_del+0x14/0x20
[15278.142592][T50670] device_del+0xbc/0x3c0
[15278.146676][T50670] pci_remove_bus_device+0x84/0x120
[15278.151714][T50670] pci_stop_and_remove_bus_device+0x6c/0x80
[15278.157447][T50670] pci_iov_remove_virtfn+0xb4/0x12c
[15278.162485][T50670] sriov_disable+0x50/0x11c
[15278.166829][T50670] pci_disable_sriov+0x24/0x30
[15278.171433][T50670] hnae3_unregister_ae_algo_prepare+0x60/0x90 [hnae3]
[15278.178039][T50670] hclge_exit+0x28/0xd0 [hclge]
[15278.182730][T50670] __se_sys_delete_module.isra.0+0x164/0x230
[15278.188550][T50670] __arm64_sys_delete_module+0x1c/0x30
[15278.193848][T50670] invoke_syscall+0x50/0x11c
[15278.198278][T50670] el0_svc_common.constprop.0+0x158/0x164
[15278.203837][T50670] do_el0_svc+0x34/0xcc
[15278.207834][T50670] el0_svc+0x20/0x30
For details, see the following figure.
rmmod hclge disable VFs
----------------------------------------------------
hclge_exit() sriov_numvfs_store()
... device_lock()
pci_disable_sriov() hns3_pci_sriov_configure()
pci_disable_sriov()
sriov_disable()
sriov_disable() if !num_VFs :
if !num_VFs : return;
return; sriov_del_vfs()
sriov_del_vfs() ...
... klist_put()
klist_put() ...
... num_VFs = 0;
num_VFs = 0; device_unlock();
In this patch, when driver is removing, we get the device_lock()
to protect num_VFs, just like sriov_numvfs_store(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: arc: fix the device for dma_map_single/dma_unmap_single
The ndev->dev and pdev->dev aren't the same device, use ndev->dev.parent
which has dma_mask, ndev->dev.parent is just pdev->dev.
Or it would cause the following issue:
[ 39.933526] ------------[ cut here ]------------
[ 39.938414] WARNING: CPU: 1 PID: 501 at kernel/dma/mapping.c:149 dma_map_page_attrs+0x90/0x1f8 |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: stm32: spdifrx: fix dma channel release in stm32_spdifrx_remove
In case of error when requesting ctrl_chan DMA channel, ctrl_chan is not
null. So the release of the dma channel leads to the following issue:
[ 4.879000] st,stm32-spdifrx 500d0000.audio-controller:
dma_request_slave_channel error -19
[ 4.888975] Unable to handle kernel NULL pointer dereference
at virtual address 000000000000003d
[...]
[ 5.096577] Call trace:
[ 5.099099] dma_release_channel+0x24/0x100
[ 5.103235] stm32_spdifrx_remove+0x24/0x60 [snd_soc_stm32_spdifrx]
[ 5.109494] stm32_spdifrx_probe+0x320/0x4c4 [snd_soc_stm32_spdifrx]
To avoid this issue, release channel only if the pointer is valid. |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx24116: prevent overflows on SNR calculus
as reported by Coverity, if reading SNR registers fail, a negative
number will be returned, causing an underflow when reading SNR
registers.
Prevent that. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-tpg: prevent the risk of a division by zero
As reported by Coverity, the logic at tpg_precalculate_line()
blindly rescales the buffer even when scaled_witdh is equal to
zero. If this ever happens, this will cause a division by zero.
Instead, add a WARN_ON_ONCE() to trigger such cases and return
without doing any precalculation. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-use-after-free in ksmbd_smb2_session_create
There is a race condition between ksmbd_smb2_session_create and
ksmbd_expire_session. This patch add missing sessions_table_lock
while adding/deleting session from global session table. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix the missing xa_store error check
xa_store() can fail, it return xa_err(-EINVAL) if the entry cannot
be stored in an XArray, or xa_err(-ENOMEM) if memory allocation failed,
so check error for xa_store() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix slab-use-after-free in smb3_preauth_hash_rsp
ksmbd_user_session_put should be called under smb3_preauth_hash_rsp().
It will avoid freeing session before calling smb3_preauth_hash_rsp(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read()
Avoid a possible buffer overflow if size is larger than 4K.
(cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434) |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix flushing uninitialized delayed_work on cache_ctr error
An unexpected WARN_ON from flush_work() may occur when cache creation
fails, caused by destroying the uninitialized delayed_work waker in the
error path of cache_create(). For example, the warning appears on the
superblock checksum error.
Reproduce steps:
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/urandom of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
Kernel logs:
(snip)
WARNING: CPU: 0 PID: 84 at kernel/workqueue.c:4178 __flush_work+0x5d4/0x890
Fix by pulling out the cancel_delayed_work_sync() from the constructor's
error path. This patch doesn't affect the use-after-free fix for
concurrent dm_resume and dm_destroy (commit 6a459d8edbdb ("dm cache: Fix
UAF in destroy()")) as cache_dtr is not changed. |
| In the Linux kernel, the following vulnerability has been resolved:
dm cache: fix out-of-bounds access to the dirty bitset when resizing
dm-cache checks the dirty bits of the cache blocks to be dropped when
shrinking the fast device, but an index bug in bitset iteration causes
out-of-bounds access.
Reproduce steps:
1. create a cache device of 1024 cache blocks (128 bytes dirty bitset)
dmsetup create cmeta --table "0 8192 linear /dev/sdc 0"
dmsetup create cdata --table "0 131072 linear /dev/sdc 8192"
dmsetup create corig --table "0 524288 linear /dev/sdc 262144"
dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 oflag=direct
dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \
/dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0"
2. shrink the fast device to 512 cache blocks, triggering out-of-bounds
access to the dirty bitset (offset 0x80)
dmsetup suspend cache
dmsetup reload cdata --table "0 65536 linear /dev/sdc 8192"
dmsetup resume cdata
dmsetup resume cache
KASAN reports:
BUG: KASAN: vmalloc-out-of-bounds in cache_preresume+0x269/0x7b0
Read of size 8 at addr ffffc900000f3080 by task dmsetup/131
(...snip...)
The buggy address belongs to the virtual mapping at
[ffffc900000f3000, ffffc900000f5000) created by:
cache_ctr+0x176a/0x35f0
(...snip...)
Memory state around the buggy address:
ffffc900000f2f80: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffc900000f3080: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
^
ffffc900000f3100: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
ffffc900000f3180: f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8 f8
Fix by making the index post-incremented. |