Search

Search Results (319857 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-66304 2025-12-01 6.2 Medium
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, users with read access on the user account management section of the admin panel can view the password hashes of all users, including the admin user. This exposure can potentially lead to privilege escalation if an attacker can crack these password hashes. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66303 2025-12-01 4.9 Medium
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, A Denial of Service (DoS) vulnerability has been identified in Grav related to the handling of scheduled_at parameters. Specifically, the application fails to properly sanitize input for cron expressions. By manipulating the scheduled_at parameter with a malicious input, such as a single quote, the application admin panel becomes non-functional, causing significant disruptions to administrative operations. The only way to recover from this issue is to manually access the host server and modify the backup.yaml file to correct the corrupted cron expression. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66302 2025-12-01 6.8 Medium
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, A path traversal vulnerability has been identified in Grav CMS, allowing authenticated attackers with administrative privileges to read arbitrary files on the underlying server filesystem. This vulnerability arises due to insufficient input sanitization in the backup tool, where user-supplied paths are not properly restricted, enabling access to files outside the intended webroot directory. The impact of this vulnerability depends on the privileges of the user account running the application. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66301 2025-12-01 N/A
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, due to improper authorization checks when modifying critical fields on a POST request to /admin/pages/{page_name}, an editor with only permissions to change basic content on the form is now able to change the functioning of the form through modifying the content of the data[_json][header][form] which is the YAML frontmatter which includes the process section which dictates what happens after a user submits the form which include some important actions that could lead to further vulnerabilities. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66300 2025-12-01 8.5 High
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, A low privilege user account with page editing privilege can read any server files using "Frontmatter" form. This includes Grav user account files (/grav/user/accounts/*.yaml), which store hashed user password, 2FA secret, and the password reset token. This can allow an adversary to compromise any registered account by resetting a password for a user to get access to the password reset token from the file or by cracking the hashed password. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66299 2025-12-01 8.8 High
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, Grav CMS is vulnerable to a Server-Side Template Injection (SSTI) that allows any authenticated user with editor permissions to execute arbitrary code on the remote server, bypassing the existing security sandbox. Since the security sandbox does not fully protect the Twig object, it is possible to interact with it (e.g., call methods, read/write attributes) through maliciously crafted Twig template directives injected into a web page. This allows an authenticated editor to add arbitrary functions to the Twig attribute system.twig.safe_filters, effectively bypassing the Grav CMS sandbox. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66298 2025-12-01 N/A
Grav is a file-based Web platform. Prior to 1.8.0-beta.27, having a simple form on site can reveal the whole Grav configuration details (including plugin configuration details) by using the correct POST payload to exploit a Server-Side Template (SST) vulnerability. Sensitive information may be contained in the configuration details. This vulnerability is fixed in 1.8.0-beta.27.
CVE-2025-66252 1 Dbbroadcast 1 Mozart Fm Transmitter 2025-12-01 N/A
Infinite Loop Denial of Service via Failed File Deletion in DB Electronica Telecomunicazioni S.p.A. Mozart FM Transmitter versions 30, 50, 100, 300, 500, 1000, 2000, 3000, 3500, 6000, 7000 allows an attacker to perform Infinite loop when unlink() fails in status_contents.php causing DoS. Due to the fact that the unlink operation is done in a while loop; if an immutable file is specified or otherwise a file in which the process has no permissions to delete; it would repeatedly attempt to do in a loop.
CVE-2025-65622 2025-12-01 N/A
Snipe-IT before 8.3.4 allows stored XSS via the Locations "Country" field, enabling a low-privileged authenticated user to inject JavaScript that executes in another user's session.
CVE-2025-48709 1 Bmc 1 Control-m 2025-12-01 3.8 Low
BMC Control-M/Server 9.0.21.300 displays cleartext database credentials in process lists and logs. An authenticated attacker with shell access could observe these credentials and use them to log in to the database server. For example, when Control-M/Server on Windows has a database connection on, it runs 'DBUStatus.exe' frequently, which then calls 'dbu_connection_details.vbs' with the username, password, database hostname, and port written in cleartext, which can be seen in event and process logs in two separate locations. Fixed in PACTV.9.0.21.307.
CVE-2025-32990 2 Gnu, Redhat 9 Gnutls, Ceph Storage, Discovery and 6 more 2025-12-01 6.5 Medium
A heap-buffer-overflow (off-by-one) flaw was found in the GnuTLS software in the template parsing logic within the certtool utility. When it reads certain settings from a template file, it allows an attacker to cause an out-of-bounds (OOB) NULL pointer write, resulting in memory corruption and a denial-of-service (DoS) that could potentially crash the system.
CVE-2025-32989 2 Gnu, Redhat 9 Gnutls, Ceph Storage, Discovery and 6 more 2025-12-01 5.3 Medium
A heap-buffer-overread vulnerability was found in GnuTLS in how it handles the Certificate Transparency (CT) Signed Certificate Timestamp (SCT) extension during X.509 certificate parsing. This flaw allows a malicious user to create a certificate containing a malformed SCT extension (OID 1.3.6.1.4.1.11129.2.4.2) that contains sensitive data. This issue leads to the exposure of confidential information when GnuTLS verifies certificates from certain websites when the certificate (SCT) is not checked correctly.
CVE-2025-32988 2 Gnu, Redhat 9 Gnutls, Ceph Storage, Discovery and 6 more 2025-12-01 6.5 Medium
A flaw was found in GnuTLS. A double-free vulnerability exists in GnuTLS due to incorrect ownership handling in the export logic of Subject Alternative Name (SAN) entries containing an otherName. If the type-id OID is invalid or malformed, GnuTLS will call asn1_delete_structure() on an ASN.1 node it does not own, leading to a double-free condition when the parent function or caller later attempts to free the same structure. This vulnerability can be triggered using only public GnuTLS APIs and may result in denial of service or memory corruption, depending on allocator behavior.
CVE-2025-11561 1 Redhat 9 Ceph Storage, Enterprise Linux, Openshift and 6 more 2025-12-01 8.8 High
A flaw was found in the integration of Active Directory and the System Security Services Daemon (SSSD) on Linux systems. In default configurations, the Kerberos local authentication plugin (sssd_krb5_localauth_plugin) is enabled, but a fallback to the an2ln plugin is possible. This fallback allows an attacker with permission to modify certain AD attributes (such as userPrincipalName or samAccountName) to impersonate privileged users, potentially resulting in unauthorized access or privilege escalation on domain-joined Linux hosts.
CVE-2025-39834 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: HWS, Fix memory leak in hws_action_get_shared_stc_nic error flow When an invalid stc_type is provided, the function allocates memory for shared_stc but jumps to unlock_and_out without freeing it, causing a memory leak. Fix by jumping to free_shared_stc label instead to ensure proper cleanup.
CVE-2022-50344 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix null-ptr-deref in ext4_write_info I caught a null-ptr-deref bug as follows: ================================================================== KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f] CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339 RIP: 0010:ext4_write_info+0x53/0x1b0 [...] Call Trace: dquot_writeback_dquots+0x341/0x9a0 ext4_sync_fs+0x19e/0x800 __sync_filesystem+0x83/0x100 sync_filesystem+0x89/0xf0 generic_shutdown_super+0x79/0x3e0 kill_block_super+0xa1/0x110 deactivate_locked_super+0xac/0x130 deactivate_super+0xb6/0xd0 cleanup_mnt+0x289/0x400 __cleanup_mnt+0x16/0x20 task_work_run+0x11c/0x1c0 exit_to_user_mode_prepare+0x203/0x210 syscall_exit_to_user_mode+0x5b/0x3a0 do_syscall_64+0x59/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ================================================================== Above issue may happen as follows: ------------------------------------- exit_to_user_mode_prepare task_work_run __cleanup_mnt cleanup_mnt deactivate_super deactivate_locked_super kill_block_super generic_shutdown_super shrink_dcache_for_umount dentry = sb->s_root sb->s_root = NULL <--- Here set NULL sync_filesystem __sync_filesystem sb->s_op->sync_fs > ext4_sync_fs dquot_writeback_dquots sb->dq_op->write_info > ext4_write_info ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2) d_inode(sb->s_root) s_root->d_inode <--- Null pointer dereference To solve this problem, we use ext4_journal_start_sb directly to avoid s_root being used.
CVE-2022-50343 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rapidio: fix possible name leaks when rio_add_device() fails Patch series "rapidio: fix three possible memory leaks". This patchset fixes three name leaks in error handling. - patch #1 fixes two name leaks while rio_add_device() fails. - patch #2 fixes a name leak while rio_register_mport() fails. This patch (of 2): If rio_add_device() returns error, the name allocated by dev_set_name() need be freed. It should use put_device() to give up the reference in the error path, so that the name can be freed in kobject_cleanup(), and the 'rdev' can be freed in rio_release_dev().
CVE-2022-50342 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: floppy: Fix memory leak in do_floppy_init() A memory leak was reported when floppy_alloc_disk() failed in do_floppy_init(). unreferenced object 0xffff888115ed25a0 (size 8): comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s) hex dump (first 8 bytes): 00 ac 67 5b 81 88 ff ff ..g[.... backtrace: [<000000007f457abb>] __kmalloc_node+0x4c/0xc0 [<00000000a87bfa9e>] blk_mq_realloc_tag_set_tags.part.0+0x6f/0x180 [<000000006f02e8b1>] blk_mq_alloc_tag_set+0x573/0x1130 [<0000000066007fd7>] 0xffffffffc06b8b08 [<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0 [<00000000e26d04ee>] do_init_module+0x1a4/0x680 [<000000001bb22407>] load_module+0x6249/0x7110 [<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200 [<000000007bddca46>] do_syscall_64+0x35/0x80 [<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 unreferenced object 0xffff88810fc30540 (size 32): comm "modprobe", pid 727, jiffies 4295051278 (age 25.529s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<000000007f457abb>] __kmalloc_node+0x4c/0xc0 [<000000006b91eab4>] blk_mq_alloc_tag_set+0x393/0x1130 [<0000000066007fd7>] 0xffffffffc06b8b08 [<0000000081f5ac40>] do_one_initcall+0xd0/0x4f0 [<00000000e26d04ee>] do_init_module+0x1a4/0x680 [<000000001bb22407>] load_module+0x6249/0x7110 [<00000000ad31ac4d>] __do_sys_finit_module+0x140/0x200 [<000000007bddca46>] do_syscall_64+0x35/0x80 [<00000000b5afec39>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 If the floppy_alloc_disk() failed, disks of current drive will not be set, thus the lastest allocated set->tag cannot be freed in the error handling path. A simple call graph shown as below: floppy_module_init() floppy_init() do_floppy_init() for (drive = 0; drive < N_DRIVE; drive++) blk_mq_alloc_tag_set() blk_mq_alloc_tag_set_tags() blk_mq_realloc_tag_set_tags() # set->tag allocated floppy_alloc_disk() blk_mq_alloc_disk() # error occurred, disks failed to allocated ->out_put_disk: for (drive = 0; drive < N_DRIVE; drive++) if (!disks[drive][0]) # the last disks is not set and loop break break; blk_mq_free_tag_set() # the latest allocated set->tag leaked Fix this problem by free the set->tag of current drive before jump to error handling path. [efremov: added stable list, changed title]
CVE-2022-50341 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix oops during encryption When running xfstests against Azure the following oops occurred on an arm64 system Unable to handle kernel write to read-only memory at virtual address ffff0001221cf000 Mem abort info: ESR = 0x9600004f EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x0f: level 3 permission fault Data abort info: ISV = 0, ISS = 0x0000004f CM = 0, WnR = 1 swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000 [ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003, pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787 Internal error: Oops: 9600004f [#1] PREEMPT SMP ... pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--) pc : __memcpy+0x40/0x230 lr : scatterwalk_copychunks+0xe0/0x200 sp : ffff800014e92de0 x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008 x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008 x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000 x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014 x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058 x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590 x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580 x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005 x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001 x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000 Call trace: __memcpy+0x40/0x230 scatterwalk_map_and_copy+0x98/0x100 crypto_ccm_encrypt+0x150/0x180 crypto_aead_encrypt+0x2c/0x40 crypt_message+0x750/0x880 smb3_init_transform_rq+0x298/0x340 smb_send_rqst.part.11+0xd8/0x180 smb_send_rqst+0x3c/0x100 compound_send_recv+0x534/0xbc0 smb2_query_info_compound+0x32c/0x440 smb2_set_ea+0x438/0x4c0 cifs_xattr_set+0x5d4/0x7c0 This is because in scatterwalk_copychunks(), we attempted to write to a buffer (@sign) that was allocated in the stack (vmalloc area) by crypt_message() and thus accessing its remaining 8 (x2) bytes ended up crossing a page boundary. To simply fix it, we could just pass @sign kmalloc'd from crypt_message() and then we're done. Luckily, we don't seem to pass any other vmalloc'd buffers in smb_rqst::rq_iov... Instead, let's map the correct pages and offsets from vmalloc buffers as well in cifs_sg_set_buf() and then avoiding such oopses.
CVE-2022-50340 1 Linux 1 Linux Kernel 2025-12-01 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: vimc: Fix wrong function called when vimc_init() fails In vimc_init(), when platform_driver_register(&vimc_pdrv) fails, platform_driver_unregister(&vimc_pdrv) is wrongly called rather than platform_device_unregister(&vimc_pdev), which causes kernel warning: Unexpected driver unregister! WARNING: CPU: 1 PID: 14517 at drivers/base/driver.c:270 driver_unregister+0x8f/0xb0 RIP: 0010:driver_unregister+0x8f/0xb0 Call Trace: <TASK> vimc_init+0x7d/0x1000 [vimc] do_one_initcall+0xd0/0x4e0 do_init_module+0x1cf/0x6b0 load_module+0x65c2/0x7820