| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix hang when cma_netevent_callback fails to queue_work
The cited commit fixed a crash when cma_netevent_callback was called for
a cma_id while work on that id from a previous call had not yet started.
The work item was re-initialized in the second call, which corrupted the
work item currently in the work queue.
However, it left a problem when queue_work fails (because the item is
still pending in the work queue from a previous call). In this case,
cma_id_put (which is called in the work handler) is therefore not
called. This results in a userspace process hang (zombie process).
Fix this by calling cma_id_put() if queue_work fails. |
| An Improper Input Validation vulnerability exists in the user websocket handler of MAAS. An authenticated, unprivileged attacker can intercept a user.update websocket request and inject the is_superuser property set to true. The server improperly validates this input, allowing the attacker to self-promote to an administrator role. This results in full administrative control over the MAAS deployment. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: marvell/cesa - Handle zero-length skcipher requests
Do not access random memory for zero-length skcipher requests.
Just return 0. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: Discard stale CPU state when handling SME traps
The logic for handling SME traps manipulates saved FPSIMD/SVE/SME state
incorrectly, and a race with preemption can result in a task having
TIF_SME set and TIF_FOREIGN_FPSTATE clear even though the live CPU state
is stale (e.g. with SME traps enabled). This can result in warnings from
do_sme_acc() where SME traps are not expected while TIF_SME is set:
| /* With TIF_SME userspace shouldn't generate any traps */
| if (test_and_set_thread_flag(TIF_SME))
| WARN_ON(1);
This is very similar to the SVE issue we fixed in commit:
751ecf6afd6568ad ("arm64/sve: Discard stale CPU state when handling SVE traps")
The race can occur when the SME trap handler is preempted before and
after manipulating the saved FPSIMD/SVE/SME state, starting and ending on
the same CPU, e.g.
| void do_sme_acc(unsigned long esr, struct pt_regs *regs)
| {
| // Trap on CPU 0 with TIF_SME clear, SME traps enabled
| // task->fpsimd_cpu is 0.
| // per_cpu_ptr(&fpsimd_last_state, 0) is task.
|
| ...
|
| // Preempted; migrated from CPU 0 to CPU 1.
| // TIF_FOREIGN_FPSTATE is set.
|
| get_cpu_fpsimd_context();
|
| /* With TIF_SME userspace shouldn't generate any traps */
| if (test_and_set_thread_flag(TIF_SME))
| WARN_ON(1);
|
| if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
| unsigned long vq_minus_one =
| sve_vq_from_vl(task_get_sme_vl(current)) - 1;
| sme_set_vq(vq_minus_one);
|
| fpsimd_bind_task_to_cpu();
| }
|
| put_cpu_fpsimd_context();
|
| // Preempted; migrated from CPU 1 to CPU 0.
| // task->fpsimd_cpu is still 0
| // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then:
| // - Stale HW state is reused (with SME traps enabled)
| // - TIF_FOREIGN_FPSTATE is cleared
| // - A return to userspace skips HW state restore
| }
Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set
by calling fpsimd_flush_task_state() to detach from the saved CPU
state. This ensures that a subsequent context switch will not reuse the
stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the
new state to be reloaded from memory prior to a return to userspace.
Note: this was originallly posted as [1].
[ Rutland: rewrite commit message ] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix ktls panic with sockmap
[ 2172.936997] ------------[ cut here ]------------
[ 2172.936999] kernel BUG at lib/iov_iter.c:629!
......
[ 2172.944996] PKRU: 55555554
[ 2172.945155] Call Trace:
[ 2172.945299] <TASK>
[ 2172.945428] ? die+0x36/0x90
[ 2172.945601] ? do_trap+0xdd/0x100
[ 2172.945795] ? iov_iter_revert+0x178/0x180
[ 2172.946031] ? iov_iter_revert+0x178/0x180
[ 2172.946267] ? do_error_trap+0x7d/0x110
[ 2172.946499] ? iov_iter_revert+0x178/0x180
[ 2172.946736] ? exc_invalid_op+0x50/0x70
[ 2172.946961] ? iov_iter_revert+0x178/0x180
[ 2172.947197] ? asm_exc_invalid_op+0x1a/0x20
[ 2172.947446] ? iov_iter_revert+0x178/0x180
[ 2172.947683] ? iov_iter_revert+0x5c/0x180
[ 2172.947913] tls_sw_sendmsg_locked.isra.0+0x794/0x840
[ 2172.948206] tls_sw_sendmsg+0x52/0x80
[ 2172.948420] ? inet_sendmsg+0x1f/0x70
[ 2172.948634] __sys_sendto+0x1cd/0x200
[ 2172.948848] ? find_held_lock+0x2b/0x80
[ 2172.949072] ? syscall_trace_enter+0x140/0x270
[ 2172.949330] ? __lock_release.isra.0+0x5e/0x170
[ 2172.949595] ? find_held_lock+0x2b/0x80
[ 2172.949817] ? syscall_trace_enter+0x140/0x270
[ 2172.950211] ? lockdep_hardirqs_on_prepare+0xda/0x190
[ 2172.950632] ? ktime_get_coarse_real_ts64+0xc2/0xd0
[ 2172.951036] __x64_sys_sendto+0x24/0x30
[ 2172.951382] do_syscall_64+0x90/0x170
......
After calling bpf_exec_tx_verdict(), the size of msg_pl->sg may increase,
e.g., when the BPF program executes bpf_msg_push_data().
If the BPF program sets cork_bytes and sg.size is smaller than cork_bytes,
it will return -ENOSPC and attempt to roll back to the non-zero copy
logic. However, during rollback, msg->msg_iter is reset, but since
msg_pl->sg.size has been increased, subsequent executions will exceed the
actual size of msg_iter.
'''
iov_iter_revert(&msg->msg_iter, msg_pl->sg.size - orig_size);
'''
The changes in this commit are based on the following considerations:
1. When cork_bytes is set, rolling back to non-zero copy logic is
pointless and can directly go to zero-copy logic.
2. We can not calculate the correct number of bytes to revert msg_iter.
Assume the original data is "abcdefgh" (8 bytes), and after 3 pushes
by the BPF program, it becomes 11-byte data: "abc?de?fgh?".
Then, we set cork_bytes to 6, which means the first 6 bytes have been
processed, and the remaining 5 bytes "?fgh?" will be cached until the
length meets the cork_bytes requirement.
However, some data in "?fgh?" is not within 'sg->msg_iter'
(but in msg_pl instead), especially the data "?" we pushed.
So it doesn't seem as simple as just reverting through an offset of
msg_iter.
3. For non-TLS sockets in tcp_bpf_sendmsg, when a "cork" situation occurs,
the user-space send() doesn't return an error, and the returned length is
the same as the input length parameter, even if some data is cached.
Additionally, I saw that the current non-zero-copy logic for handling
corking is written as:
'''
line 1177
else if (ret != -EAGAIN) {
if (ret == -ENOSPC)
ret = 0;
goto send_end;
'''
So it's ok to just return 'copied' without error when a "cork" situation
occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
hisi_acc_vfio_pci: fix XQE dma address error
The dma addresses of EQE and AEQE are wrong after migration and
results in guest kernel-mode encryption services failure.
Comparing the definition of hardware registers, we found that
there was an error when the data read from the register was
combined into an address. Therefore, the address combination
sequence needs to be corrected.
Even after fixing the above problem, we still have an issue
where the Guest from an old kernel can get migrated to
new kernel and may result in wrong data.
In order to ensure that the address is correct after migration,
if an old magic number is detected, the dma address needs to be
updated. |
| An issue was discovered in DriveLock 24.1 through 24.1.*, 24.2 before 24.2.8, and 25.1 before 25.1.6. Directories and files created by the agent are created with overly permissive ACLs, allowing local users without administrator rights to trigger actions or destabilize the agent. |
| An issue was discovered in DriveLock 24.1 before 24.1.6, 24.2 before 24.2.7, and 25.1 before 25.1.5. Local unprivileged users can manipulate a DriveLock process to execute arbitrary commands on Windows computers. |
| An issue was discovered in DriveLock 24.1 through 24.1.*, 24.2 through 24.2.*, and 25.1 through 25.1.*. An incomplete configuration (agent authentication) in DriveLock tenant allows attackers to impersonate any DriveLock agent on the network against the DES (DriveLock Enterprise Service). |
| An issue was discovered in DriveLock 24.1 before 24.1.6, 24.2 before 24.2.7, and 25.1 before 25.1.5. An unprivileged user could cause occasionally a Blue Screen Of Death (BSOD) on Windows computers by using an IOCTL and an unterminated string. |
| This issue was addressed with additional entitlement checks. This issue is fixed in iOS 26.2 and iPadOS 26.2, iOS 18.7.3 and iPadOS 18.7.3. An app may be able to access user-sensitive data. |
| A permissions issue was addressed with additional restrictions. This issue is fixed in visionOS 26.2, iOS 26.2 and iPadOS 26.2, watchOS 26.2, macOS Tahoe 26.2. An app may be able to access sensitive payment tokens. |
| A logic issue was addressed with improved validation. This issue is fixed in macOS Tahoe 26.2. An app may be able to access sensitive user data. |
| The issue was addressed with additional permissions checks. This issue is fixed in macOS Tahoe 26.2, Safari 26.2. An app may be able to access sensitive user data. |
| A logic issue was addressed with improved checks. This issue is fixed in macOS Tahoe 26.2. An app may be able to break out of its sandbox. |
| A permissions issue was addressed with additional restrictions. This issue is fixed in watchOS 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. An app may be able to identify what other apps a user has installed. |
| The issue was addressed with improved handling of caches. This issue is fixed in macOS Tahoe 26.2. An app may be able to access protected user data. |
| A logging issue was addressed with improved data redaction. This issue is fixed in macOS Tahoe 26.2, iOS 26.2 and iPadOS 26.2, watchOS 26.2. An app may be able to access a user’s Safari history. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on sit_bitmap_size
w/ below testcase, resize will generate a corrupted image which
contains inconsistent metadata, so when mounting such image, it
will trigger kernel panic:
touch img
truncate -s $((512*1024*1024*1024)) img
mkfs.f2fs -f img $((256*1024*1024))
resize.f2fs -s -i img -t $((1024*1024*1024))
mount img /mnt/f2fs
------------[ cut here ]------------
kernel BUG at fs/f2fs/segment.h:863!
Oops: invalid opcode: 0000 [#1] SMP PTI
CPU: 11 UID: 0 PID: 3922 Comm: mount Not tainted 6.15.0-rc1+ #191 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_ra_meta_pages+0x47c/0x490
Call Trace:
f2fs_build_segment_manager+0x11c3/0x2600
f2fs_fill_super+0xe97/0x2840
mount_bdev+0xf4/0x140
legacy_get_tree+0x2b/0x50
vfs_get_tree+0x29/0xd0
path_mount+0x487/0xaf0
__x64_sys_mount+0x116/0x150
do_syscall_64+0x82/0x190
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fdbfde1bcfe
The reaseon is:
sit_i->bitmap_size is 192, so size of sit bitmap is 192*8=1536, at maximum
there are 1536 sit blocks, however MAIN_SEGS is 261893, so that sit_blk_cnt
is 4762, build_sit_entries() -> current_sit_addr() tries to access
out-of-boundary in sit_bitmap at offset from [1536, 4762), once sit_bitmap
and sit_bitmap_mirror is not the same, it will trigger f2fs_bug_on().
Let's add sanity check in f2fs_sanity_check_ckpt() to avoid panic. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: prevent kernel warning due to negative i_nlink from corrupted image
WARNING: CPU: 1 PID: 9426 at fs/inode.c:417 drop_nlink+0xac/0xd0
home/cc/linux/fs/inode.c:417
Modules linked in:
CPU: 1 UID: 0 PID: 9426 Comm: syz-executor568 Not tainted
6.14.0-12627-g94d471a4f428 #2 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:drop_nlink+0xac/0xd0 home/cc/linux/fs/inode.c:417
Code: 48 8b 5d 28 be 08 00 00 00 48 8d bb 70 07 00 00 e8 f9 67 e6 ff
f0 48 ff 83 70 07 00 00 5b 5d e9 9a 12 82 ff e8 95 12 82 ff 90
<0f> 0b 90 c7 45 48 ff ff ff ff 5b 5d e9 83 12 82 ff e8 fe 5f e6
ff
RSP: 0018:ffffc900026b7c28 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8239710f
RDX: ffff888041345a00 RSI: ffffffff8239717b RDI: 0000000000000005
RBP: ffff888054509ad0 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000000 R11: ffffffff9ab36f08 R12: ffff88804bb40000
R13: ffff8880545091e0 R14: 0000000000008000 R15: ffff8880545091e0
FS: 000055555d0c5880(0000) GS:ffff8880eb3e3000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f915c55b178 CR3: 0000000050d20000 CR4: 0000000000352ef0
Call Trace:
<task>
f2fs_i_links_write home/cc/linux/fs/f2fs/f2fs.h:3194 [inline]
f2fs_drop_nlink+0xd1/0x3c0 home/cc/linux/fs/f2fs/dir.c:845
f2fs_delete_entry+0x542/0x1450 home/cc/linux/fs/f2fs/dir.c:909
f2fs_unlink+0x45c/0x890 home/cc/linux/fs/f2fs/namei.c:581
vfs_unlink+0x2fb/0x9b0 home/cc/linux/fs/namei.c:4544
do_unlinkat+0x4c5/0x6a0 home/cc/linux/fs/namei.c:4608
__do_sys_unlink home/cc/linux/fs/namei.c:4654 [inline]
__se_sys_unlink home/cc/linux/fs/namei.c:4652 [inline]
__x64_sys_unlink+0xc5/0x110 home/cc/linux/fs/namei.c:4652
do_syscall_x64 home/cc/linux/arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xc7/0x250 home/cc/linux/arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fb3d092324b
Code: 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 83 c8 ff c3 66
2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 57 00 00 00 0f 05
<48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01
48
RSP: 002b:00007ffdc232d938 EFLAGS: 00000206 ORIG_RAX: 0000000000000057
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fb3d092324b
RDX: 00007ffdc232d960 RSI: 00007ffdc232d960 RDI: 00007ffdc232d9f0
RBP: 00007ffdc232d9f0 R08: 0000000000000001 R09: 00007ffdc232d7c0
R10: 00000000fffffffd R11: 0000000000000206 R12: 00007ffdc232eaf0
R13: 000055555d0cebb0 R14: 00007ffdc232d958 R15: 0000000000000001
</task> |