| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The AI Engine – The Chatbot and AI Framework for WordPress plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the `rest_helpers_update_media_metadata` function in all versions up to, and including, 3.3.2. This makes it possible for authenticated attackers, with Editor-level access and above, to upload arbitrary files on the affected site's server which may make remote code execution possible. The attacker can upload a benign image file, then use the `update_media_metadata` endpoint to rename it to a PHP file, creating an executable PHP file in the uploads directory. |
| The Order Minimum/Maximum Amount Limits for WooCommerce plugin for WordPress is vulnerable to Stored Cross-Site Scripting via settings in all versions up to, and including, 4.6.8 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Shop Manager-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| The Appointment Hour Booking – Booking Calendar plugin for WordPress is vulnerable to Stored Cross-Site Scripting via form field configuration parameters in all versions up to, and including, 1.5.60 due to insufficient input sanitization and output escaping on the 'Min length/characters' and 'Max length/characters' field configuration values. This makes it possible for authenticated attackers, with administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses the form builder interface. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| The Ivory Search – WordPress Search Plugin plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 5.5.13 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| The Database for Contact Form 7, WPforms, Elementor forms plugin for WordPress is vulnerable to authorization bypass due to missing capability checks on the CSV export functionality in all versions up to, and including, 1.4.5. This makes it possible for unauthenticated attackers to download sensitive form submission data containing personally identifiable information (PII) by accessing the CSV export endpoint with an export key that is exposed in publicly accessible page source code. The vulnerability is created because while the shortcode properly filters displayed entries by user, the CSV export handler completely bypasses this filtering and exports all entries regardless of user permissions. |
| Clatter is a no_std compatible, pure Rust implementation of the Noise protocol framework with post-quantum support. Versiosn prior to2.2.0 have a protocol compliance vulnerability. The library allowed post-quantum handshake patterns that violated the PSK validity rule (Noise Protocol Framework Section 9.3). This could allow PSK-derived keys to be used for encryption without proper randomization by self-chosen ephemeral randomness, weakening security guarantees and potentially allowing catastrophic key reuse. Affected default patterns include `noise_pqkk_psk0`, `noise_pqkn_psk0`, `noise_pqnk_psk0`, `noise_pqnn_psk0``, and some hybrid variants. Users of these patterns may have been using handshakes that do not meet the intended security properties. The issue is fully patched and released in Clatter v2.2.0. The fixed version includes runtime checks to detect offending handshake patterns. As a workaround, avoid using offending `*_psk0` variants of post-quantum patterns. Review custom handshake patterns carefully. |
| soroban-fixed-point-math is a fixed-point math library for Soroban smart contacts. In versions 1.3.0 and 1.4.0, the `mulDiv(x, y, z)` function incorrectly handled cases where both the intermediate product $x * y$ and the divisor $z$ were negative. The logic assumed that if the intermediate product was negative, the final result must also be negative, neglecting the sign of $z$. This resulted in rounding being applied in the wrong direction for cases where both $x * y$ and $z$ were negative. The functions most at risk are `fixed_div_floor` and `fixed_div_ceil`, as they often use non-constant numbers as the divisor $z$ in `mulDiv`. This error is present in all signed `FixedPoint` and `SorobanFixedPoint` implementations, including `i64`, `i128`, and `I256`. Versions 1.3.1 and 1.4.1 contain a patch. No known workarounds for this issue are available. |
| PHPUnit is a testing framework for PHP. A vulnerability has been discovered in versions prior to 12.5.8, 11.5.50, 10.5.62, 9.6.33, and 8.5.52 involving unsafe deserialization of code coverage data in PHPT test execution. The vulnerability exists in the `cleanupForCoverage()` method, which deserializes code coverage files without validation, potentially allowing remote code execution if malicious `.coverage` files are present prior to the execution of the PHPT test. The vulnerability occurs when a `.coverage` file, which should not exist before test execution, is deserialized without the `allowed_classes` parameter restriction. An attacker with local file write access can place a malicious serialized object with a `__wakeup()` method into the file system, leading to arbitrary code execution during test runs with code coverage instrumentation enabled. This vulnerability requires local file write access to the location where PHPUnit stores or expects code coverage files for PHPT tests. This can occur through CI/CD pipeline attacks, the local development environment, and/or compromised dependencies. Rather than just silently sanitizing the input via `['allowed_classes' => false]`, the maintainer has chosen to make the anomalous state explicit by treating pre-existing `.coverage` files for PHPT tests as an error condition. Starting in versions in versions 12.5.8, 11.5.50, 10.5.62, 9.6.33, when a `.coverage` file is detected for a PHPT test prior to execution, PHPUnit will emit a clear error message identifying the anomalous state. Organizations can reduce the effective risk of this vulnerability through proper CI/CD configuration, including ephemeral runners, code review enforcement, branch protection, artifact isolation, and access control. |
| Kargo manages and automates the promotion of software artifacts. Prior to versions 1.8.7, 1.7.7, and 1.6.3, a bug was found with authentication checks on the `GetConfig()` API endpoint. This allowed unauthenticated users to access this endpoint by specifying an `Authorization` header with any non-empty `Bearer` token value, regardless of validity. This vulnerability did allow for exfiltration of configuration data such as endpoints for connected Argo CD clusters. This data could allow an attacker to enumerate cluster URLs and namespaces for use in subsequent attacks. Additionally, the same bug affected the `RefreshResource` endpoint. This endpoint does not lead to any information disclosure, but could be used by an unauthenticated attacker to perform a denial-of-service style attack against the Kargo API. `RefreshResource` sets an annotation on specific Kubernetes resources to trigger reconciliations. If run on a constant loop, this could also slow down legitimate requests to the Kubernetes API server. This problem has been patched in Kargo versiosn 1.8.7, 1.7.7, and 1.6.3. There are no workarounds for this issue. |
| Squidex is an open source headless content management system and content management hub. Versions of the application up to and including 7.21.0 allow users to define "Webhooks" as actions within the Rules engine. The url parameter in the webhook configuration does not appear to validate or restrict destination IP addresses. It accepts local addresses such as 127.0.0.1 or localhost. When a rule is triggered (Either manual trigger by manually calling the trigger endpoint or by a content update or any other triggers), the backend server executes an HTTP request to the user-supplied URL. Crucially, the server logs the full HTTP response in the rule execution log (lastDump field), which is accessible via the API. Which turns a "Blind" SSRF into a "Full Read" SSRF. As of time of publication, no patched versions are available. |
| Wasmtime is a runtime for WebAssembly. Starting in version 29.0.0 and prior to version 36.0.5, 40.0.3, and 41.0.1, on x86-64 platforms with AVX, Wasmtime's compilation of the `f64.copysign` WebAssembly instruction with Cranelift may load 8 more bytes than is necessary. When signals-based-traps are disabled this can result in a uncaught segfault due to loading from unmapped guard pages. With guard pages disabled it's possible for out-of-sandbox data to be loaded, but unless there is another bug in Cranelift this data is not visible to WebAssembly guests. Wasmtime 36.0.5, 40.0.3, and 41.0.1 have been released to fix this issue. Users are recommended to upgrade to the patched versions of Wasmtime. Other affected versions are not patched and users should updated to supported major version instead. This bug can be worked around by enabling signals-based-traps. While disabling guard pages can be a quick fix in some situations, it's not recommended to disabled guard pages as it is a key defense-in-depth measure of Wasmtime. |
| SandboxJS is a JavaScript sandboxing library. Versions prior to 0.8.26 have a sandbox escape vulnerability due to `AsyncFunction` not being isolated in `SandboxFunction`. The library attempts to sandbox code execution by replacing the global `Function` constructor with a safe, sandboxed version (`SandboxFunction`). This is handled in `utils.ts` by mapping `Function` to `sandboxFunction` within a map used for lookups. However, before version 0.8.26, the library did not include mappings for `AsyncFunction`, `GeneratorFunction`, and `AsyncGeneratorFunction`. These constructors are not global properties but can be accessed via the `.constructor` property of an instance (e.g., `(async () => {}).constructor`). In `executor.ts`, property access is handled. When code running inside the sandbox accesses `.constructor` on an async function (which the sandbox allows creating), the `executor` retrieves the property value. Since `AsyncFunction` was not in the safe-replacement map, the `executor` returns the actual native host `AsyncFunction` constructor. Constructors for functions in JavaScript (like `Function`, `AsyncFunction`) create functions that execute in the global scope. By obtaining the host `AsyncFunction` constructor, an attacker can create a new async function that executes entirely outside the sandbox context, bypassing all restrictions and gaining full access to the host environment (Remote Code Execution). Version 0.8.26 patches this vulnerability. |
| The vulnerability stems from an incorrect error-checking logic in the CreateCounter() function (in threadx/utility/rtos_compatibility_layers/OSEK/tx_osek.c) when handling the return value of osek_get_counter(). Specifically, the current code checks if cntr_id equals 0u to determine failure, but @osek_get_counter() actually returns E_OS_SYS_STACK (defined as 12U) when it fails. This mismatch causes the error branch to never execute even when the counter pool is exhausted.
As a result, when the counter pool is depleted, the code proceeds to cast the error code (12U) to a pointer (OSEK_COUNTER *), creating a wild pointer. Subsequent writes to members of this pointer lead to writes to illegal memory addresses (e.g., 0x0000000C), which can trigger immediate HardFaults or silent memory corruption.
This vulnerability poses significant risks, including potential denial-of-service attacks (via repeated calls to exhaust the counter pool) and unauthorized memory access. |
| Meshtastic is an open source mesh networking solution. In the current Meshtastic architecture, a Node is identified by their NodeID, generated from the MAC address, rather than their public key. This aspect downgrades the security, specifically by abusing the HAM mode which doesn't use encryption. An attacker can, as such, forge a NodeInfo on behalf of a victim node advertising that the HAM mode is enabled. This, in turn, will allow the other nodes on the mesh to accept the new information and overwriting the NodeDB. The other nodes will then only be able to send direct messages to the victim by using the shared channel key instead of the PKC. Additionally, because HAM mode by design doesn't provide any confidentiality or authentication of information, the attacker could potentially also be able to change the Node details, like the full name, short code, etc. To keep the attack persistent, it is enough to regularly resend the forged NodeInfo, in particular right after the victim sends their own. A patch is available in version 2.7.6.834c3c5. |
| A denial-of-service vulnerability exists in the NetX IPv6 component functionality of Eclipse ThreadX NetX Duo. A specially crafted network packet of "Packet Too Big" with more than 15 different source address can lead to denial of service. An attacker can send a malicious packet to trigger this vulnerability. |
| OpenEMR is a free and open source electronic health records and medical practice management application. Versions prior to 7.0.4 have a vulnerability where sensitive data is unintentionally revealed to unauthorized parties. Contents of Clinical Notes and Care Plan, where an encounter has Sensitivity=high, can be viewed and changed by users who do not have Sensitivities=high privilege. Version 7.0.4 fixes the issue. |
| Dokploy is a free, self-hostable Platform as a Service (PaaS). In versions prior to 0.26.6, a critical command injection vulnerability exists in Dokploy's WebSocket endpoint `/docker-container-terminal`. The `containerId` and `activeWay` parameters are directly interpolated into shell commands without sanitization, allowing authenticated attackers to execute arbitrary commands on the host server. Version 0.26.6 fixes the issue. |
| Dokploy is a free, self-hostable Platform as a Service (PaaS). In versions prior to 0.26.6, a hardcoded credential in the provided installation script (located at https://dokploy.com/install.sh, line 154) uses a hardcoded password when creating the database container. This means that nearly all Dokploy installations use the same database credentials and could be compromised. Version 0.26.6 contains a patch for the issue. |
| Dokploy is a free, self-hostable Platform as a Service (PaaS). In versions prior to 0.26.6, the Dokploy web interface is vulnerable to Clickjacking attacks due to missing frame-busting headers. This allows attackers to embed Dokploy pages in malicious iframes and trick authenticated users into performing unintended actions. Version 0.26.6 patches the issue. |
| Dirsearch 0.4.1 contains a CSV injection vulnerability when using the --csv-report flag that allows attackers to inject formulas through redirected endpoints. Attackers can craft malicious server redirects with comma-separated paths containing Excel formulas to manipulate the generated CSV report. |