CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
RSA BSAFE Crypto-C Micro Edition versions from 4.0.0.0 before 4.0.5.4 and from 4.1.0 before 4.1.4, RSA BSAFE Micro Edition Suite versions from 4.0.0 before 4.0.13 and from 4.1.0 before 4.4 and RSA Crypto-C versions from 6.0.0 through 6.4.* are vulnerable to an out-of-bounds read vulnerability when processing DSA signature. A malicious remote user could potentially exploit this vulnerability to cause a crash in the library of the affected system. |
An issue was discovered in EMC RSA BSAFE Crypto-J versions prior to 6.2.2. There is an Improper OCSP Validation Vulnerability. OCSP responses have two time values: thisUpdate and nextUpdate. These specify a validity period; however, both values are optional. Crypto-J treats the lack of a nextUpdate as indicating that the OCSP response is valid indefinitely instead of restricting its validity for a brief period surrounding the thisUpdate time. This vulnerability is similar to the issue described in CVE-2015-4748. |
EMC RSA BSAFE Cert-C before 2.9.0.5 contains a potential improper certificate processing vulnerability. |
EMC RSA BSAFE Crypto-J versions prior to 6.2.2 has a PKCS#12 Timing Attack Vulnerability. A possible timing attack could be carried out by modifying a PKCS#12 file that has an integrity MAC for which the password is not known. An attacker could then feed the modified PKCS#12 file to the toolkit and guess the current MAC one byte at a time. This is possible because Crypto-J uses a non-constant-time method to compare the stored MAC with the calculated MAC. This vulnerability is similar to the issue described in CVE-2015-2601. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3 and RSA BSAFE SSL-C 2.8.9 and earlier allow remote SSL servers to conduct ECDHE-to-ECDH downgrade attacks and trigger a loss of forward secrecy by omitting the ServerKeyExchange message, a similar issue to CVE-2014-3572. |
EMC RSA BSAFE Micro Edition Suite (MES) 3.2.x before 3.2.6 and 4.0.x before 4.0.5 does not properly validate X.509 certificate chains, which allows man-in-the-middle attackers to spoof SSL servers via a crafted certificate chain. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x and 4.1.x before 4.1.5, RSA BSAFE Crypto-C Micro Edition (CCME) 4.0.x and 4.1.x before 4.1.3, RSA BSAFE Crypto-J before 6.2.1, RSA BSAFE SSL-J before 6.2.1, and RSA BSAFE SSL-C before 2.8.9 allow remote attackers to discover a private-key prime by conducting a Lenstra side-channel attack that leverages an application's failure to detect an RSA signature failure during a TLS session. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3 and RSA BSAFE SSL-C 2.8.9 and earlier, when client authentication and an ephemeral Diffie-Hellman ciphersuite are enabled, allow remote attackers to cause a denial of service (daemon crash) via a ClientKeyExchange message with a length of zero, a similar issue to CVE-2015-1787. |
Integer underflow in the base64-decoding implementation in EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3, RSA BSAFE Crypto-C Micro Edition (Crypto-C ME) before 4.0.4 and 4.1, and RSA BSAFE SSL-C 2.8.9 and earlier allows remote attackers to cause a denial of service (memory corruption or segmentation fault) or possibly have unspecified other impact via crafted base64 data, a similar issue to CVE-2015-0292. |
The client in EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.9 and 4.1.x before 4.1.5 places the weakest algorithms first in a signature-algorithm list transmitted to a server, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by leveraging server behavior in which the first algorithm is used. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3 and RSA BSAFE SSL-C 2.8.9 and earlier do not properly restrict TLS state transitions, which makes it easier for remote attackers to conduct cipher-downgrade attacks to EXPORT_RSA ciphers via crafted TLS traffic, related to the "FREAK" issue, a similar issue to CVE-2015-0204. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.6 and RSA BSAFE SSL-J before 6.1.4 do not ensure that a server's X.509 certificate is the same during renegotiation as it was before renegotiation, which allows man-in-the-middle attackers to obtain sensitive information or modify TLS session data via a "triple handshake attack." |
The TLS implementation in EMC RSA BSAFE-C Toolkits (aka Share for C and C++) sends a long series of random bytes during use of the Dual_EC_DRBG algorithm, which makes it easier for remote attackers to obtain plaintext from TLS sessions by recovering the algorithm's inner state, a different issue than CVE-2007-6755. |
The Dual_EC_DRBG implementation in EMC RSA BSAFE-C Toolkits (aka Share for C and C++) processes certain requests for output bytes by considering only the requested byte count and not the use of cached bytes, which makes it easier for remote attackers to obtain plaintext from TLS sessions by recovering the algorithm's inner state, a different issue than CVE-2007-6755. |
The TLS implementation in EMC RSA BSAFE-Java Toolkits (aka Share for Java) supports the Extended Random extension during use of the Dual_EC_DRBG algorithm, which makes it easier for remote attackers to obtain plaintext from TLS sessions by requesting long nonces from a server, a different issue than CVE-2007-6755. |
The server in EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.5 does not properly process certificate chains, which allows remote attackers to cause a denial of service (daemon crash) via unspecified vectors. |
EMC RSA BSAFE Micro Edition Suite (MES) 4.0.x before 4.0.8 and 4.1.x before 4.1.3, RSA BSAFE Crypto-J before 6.2, RSA BSAFE SSL-J before 6.2, and RSA BSAFE SSL-C 2.8.9 and earlier do not enforce certain constraints on certificate data, which allows remote attackers to defeat a fingerprint-based certificate-blacklist protection mechanism by including crafted data within a certificate's unsigned portion, a similar issue to CVE-2014-8275. |
The (1) JSAFE and (2) JSSE APIs in EMC RSA BSAFE SSL-J 5.x before 5.1.3 and 6.x before 6.0.2 make it easier for remote attackers to bypass intended cryptographic protection mechanisms by triggering application-data processing during the TLS handshake, a time at which the data is both unencrypted and unauthenticated. |
The SSLSocket implementation in the (1) JSAFE and (2) JSSE APIs in EMC RSA BSAFE SSL-J 5.x before 5.1.3 and 6.x before 6.0.2 allows remote attackers to cause a denial of service (memory consumption) by triggering application-data processing during the TLS handshake, a time at which the data is internally buffered. |
The NIST SP 800-90A default statement of the Dual Elliptic Curve Deterministic Random Bit Generation (Dual_EC_DRBG) algorithm contains point Q constants with a possible relationship to certain "skeleton key" values, which might allow context-dependent attackers to defeat cryptographic protection mechanisms by leveraging knowledge of those values. NOTE: this is a preliminary CVE for Dual_EC_DRBG; future research may provide additional details about point Q and associated attacks, and could potentially lead to a RECAST or REJECT of this CVE. |