CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Docker Registry before 2.6.2 in Docker Distribution does not properly restrict the amount of content accepted from a user, which allows remote attackers to cause a denial of service (memory consumption) via the manifest endpoint. |
RunC allowed additional container processes via 'runc exec' to be ptraced by the pid 1 of the container. This allows the main processes of the container, if running as root, to gain access to file-descriptors of these new processes during the initialization and can lead to container escapes or modification of runC state before the process is fully placed inside the container. |
libcontainer/user/user.go in runC before 0.1.0, as used in Docker before 1.11.2, improperly treats a numeric UID as a potential username, which allows local users to gain privileges via a numeric username in the password file in a container. |
Docker before 1.3.2 allows remote attackers to write to arbitrary files and execute arbitrary code via a (1) symlink or (2) hard link attack in an image archive in a (a) pull or (b) load operation. |
Docker 1.3.2 allows remote attackers to execute arbitrary code with root privileges via a crafted (1) image or (2) build in a Dockerfile in an LZMA (.xz) archive, related to the chroot for archive extraction. |
Docker Engine before 1.6.1 allows local users to set arbitrary Linux Security Modules (LSM) and docker_t policies via an image that allows volumes to override files in /proc. |
Docker 1.0.0 uses world-readable and world-writable permissions on the management socket, which allows local users to gain privileges via unspecified vectors. |
Docker before 1.3.3 does not properly validate image IDs, which allows remote attackers to conduct path traversal attacks and spoof repositories via a crafted image in a (1) "docker load" operation or (2) "registry communications." |
The Red Hat docker package before 1.5.0-28, when using the --add-registry option, falls back to HTTP when the HTTPS connection to the registry fails, which allows man-in-the-middle attackers to conduct downgrade attacks and obtain authentication and image data by leveraging a network position between the client and the registry to block HTTPS traffic. NOTE: this vulnerability exists because of a CVE-2014-5277 regression. |
Docker Engine before 1.6.1 uses weak permissions for (1) /proc/asound, (2) /proc/timer_stats, (3) /proc/latency_stats, and (4) /proc/fs, which allows local users to modify the host, obtain sensitive information, and perform protocol downgrade attacks via a crafted image. |
Libcontainer and Docker Engine before 1.6.1 opens the file-descriptor passed to the pid-1 process before performing the chroot, which allows local users to gain privileges via a symlink attack in an image. |
Docker Engine 1.12.2 enabled ambient capabilities with misconfigured capability policies. This allowed malicious images to bypass user permissions to access files within the container filesystem or mounted volumes. |
Jenkins Docker Commons Plugin 1.17 and earlier does not sanitize the name of an image or a tag, resulting in an OS command execution vulnerability exploitable by attackers with Item/Configure permission or able to control the contents of a previously configured job's SCM repository. |
A flaw was found in ansible. Credentials, such as secrets, are being disclosed in console log by default and not protected by no_log feature when using those modules. An attacker can take advantage of this information to steal those credentials. The highest threat from this vulnerability is to data confidentiality. Versions before ansible 2.9.18 are affected. |
The docker packages version docker-1.13.1-108.git4ef4b30.el7 as released for Red Hat Enterprise Linux 7 Extras via RHBA-2020:0053 (https://access.redhat.com/errata/RHBA-2020:0053) included an incorrect version of runc that was missing multiple bug and security fixes. One of the fixes regressed in that update was the fix for CVE-2016-9962, that was previously corrected in the docker packages in Red Hat Enterprise Linux 7 Extras via RHSA-2017:0116 (https://access.redhat.com/errata/RHSA-2017:0116). The CVE-2020-14300 was assigned to this security regression and it is specific to the docker packages produced by Red Hat. The original issue - CVE-2016-9962 - could possibly allow a process inside container to compromise a process entering container namespace and execute arbitrary code outside of the container. This could lead to compromise of the container host or other containers running on the same container host. This issue only affects a single version of Docker, 1.13.1-108.git4ef4b30, shipped in Red Hat Enterprise Linux 7. Both earlier and later versions are not affected. |
The version of docker as released for Red Hat Enterprise Linux 7 Extras via RHBA-2020:0053 advisory included an incorrect version of runc missing the fix for CVE-2019-5736, which was previously fixed via RHSA-2019:0304. This issue could allow a malicious or compromised container to compromise the container host and other containers running on the same host. This issue only affects docker version 1.13.1-108.git4ef4b30.el7, shipped in Red Hat Enterprise Linux 7 Extras. Both earlier and later versions are not affected. |
runc through 1.0-rc6, as used in Docker before 18.09.2 and other products, allows attackers to overwrite the host runc binary (and consequently obtain host root access) by leveraging the ability to execute a command as root within one of these types of containers: (1) a new container with an attacker-controlled image, or (2) an existing container, to which the attacker previously had write access, that can be attached with docker exec. This occurs because of file-descriptor mishandling, related to /proc/self/exe. |
runc through 1.0.0-rc8, as used in Docker through 19.03.2-ce and other products, allows AppArmor restriction bypass because libcontainer/rootfs_linux.go incorrectly checks mount targets, and thus a malicious Docker image can mount over a /proc directory. |
In Docker before 18.09.4, an attacker who is capable of supplying or manipulating the build path for the "docker build" command would be able to gain command execution. An issue exists in the way "docker build" processes remote git URLs, and results in command injection into the underlying "git clone" command, leading to code execution in the context of the user executing the "docker build" command. This occurs because git ref can be misinterpreted as a flag. |
In Docker through 18.06.1-ce-rc2, the API endpoints behind the 'docker cp' command are vulnerable to a symlink-exchange attack with Directory Traversal, giving attackers arbitrary read-write access to the host filesystem with root privileges, because daemon/archive.go does not do archive operations on a frozen filesystem (or from within a chroot). |