CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability was found in Undertow, where the chunked response hangs after the body was flushed. The response headers and body were sent but the client would continue waiting as Undertow does not send the expected 0\r\n termination of the chunked response. This results in uncontrolled resource consumption, leaving the server side to a denial of service attack. This happens only with Java 17 TLSv1.3 scenarios. |
A flaw was found in the Wildfly Server Role Based Access Control (RBAC) provider. When authorization to control management operations is secured using the Role Based Access Control provider, a user without the required privileges can suspend or resume the server. A user with a Monitor or Auditor role is supposed to have only read access permissions and should not be able to suspend the server.
The vulnerability is caused by the Suspend and Resume handlers not performing authorization checks to validate whether the current user has the required permissions to proceed with the action. |
A flaw was found in the HAL Console in the Wildfly component, which does not neutralize or incorrectly neutralizes user-controllable input before it is placed in output used as a web page that is served to other users. The attacker must be authenticated as a user that belongs to management groups “SuperUser”, “Admin”, or “Maintainer”. |
A flaw was found in Infinispan CLI. A sensitive password, decoded from a Base64-encoded Kubernetes secret, is processed in plaintext and included in a command string that may expose the data in an error message when a command is not found. |
A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
A vulnerability was found in Keycloak. Admin users may have to access sensitive server environment variables and system properties through user-configurable URLs. When configuring backchannel logout URLs or admin URLs, admin users can include placeholders like ${env.VARNAME} or ${PROPNAME}. The server replaces these placeholders with the actual values of environment variables or system properties during URL processing. |
A denial of service vulnerability was found in Keycloak that could allow an administrative user with the right to change realm settings to disrupt the service. This action is done by modifying any of the security headers and inserting newlines, which causes the Keycloak server to write to a request that has already been terminated, leading to the failure of said request. |
A vulnerability was found in Keycloak. The environment option `KC_CACHE_EMBEDDED_MTLS_ENABLED` does not work and the JGroups replication configuration is always used in plain text which can allow an attacker that has access to adjacent networks related to JGroups to read sensitive information. |
A vulnerability was found in the Keycloak-services package. If untrusted data is passed to the SearchQueryUtils method, it could lead to a denial of service (DoS) scenario by exhausting system resources due to a Regex complexity. |
A flaw was found in Red Hat Enterprise Application Platform 8. When an OIDC app that serves multiple tenants attempts to access the second tenant, it should prompt the user to log in again since the second tenant is secured with a different OIDC configuration. The underlying issue is in OidcSessionTokenStore when determining if a cached token should be used or not. This logic needs to be updated to take into account the new "provider-url" option in addition to the "realm" option.
EAP-7 does not provide the vulnerable provider-url configuration option in its OIDC implementation and is not affected by this flaw. |
A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance. |
A flaw was found in npm-serialize-javascript. The vulnerability occurs because the serialize-javascript module does not properly sanitize certain inputs, such as regex or other JavaScript object types, allowing an attacker to inject malicious code. This code could be executed when deserialized by a web browser, causing Cross-site scripting (XSS) attacks. This issue is critical in environments where serialized data is sent to web clients, potentially compromising the security of the website or web application using this package. |
A vulnerability was found in Wildfly’s management interface. Due to the lack of limitation of sockets for the management interface, it may be possible to cause a denial of service hitting the nofile limit as there is no possibility to configure or set a maximum number of connections. |
A vulnerability was found in jberet-core logging. An exception in 'dbProperties' might display user credentials such as the username and password for the database-connection. |
A vulnerability was found in Undertow, where URL-encoded request paths can be mishandled during concurrent requests on the AJP listener. This issue arises because the same buffer is used to decode the paths for multiple requests simultaneously, leading to incorrect path information being processed. As a result, the server may attempt to access the wrong path, causing errors such as "404 Not Found" or other application failures. This flaw can potentially lead to a denial of service, as legitimate resources become inaccessible due to the path mix-up. |
A flaw was found in` JwtValidator.resolvePublicKey` in JBoss EAP, where the validator checks jku and sends a HTTP request. During this process, no whitelisting or other filtering behavior is performed on the destination URL address, which may result in a server-side request forgery (SSRF) vulnerability. |
A vulnerability was found in Undertow where the ProxyProtocolReadListener reuses the same StringBuilder instance across multiple requests. This issue occurs when the parseProxyProtocolV1 method processes multiple requests on the same HTTP connection. As a result, different requests may share the same StringBuilder instance, potentially leading to information leakage between requests or responses. In some cases, a value from a previous request or response may be erroneously reused, which could lead to unintended data exposure. This issue primarily results in errors and connection termination but creates a risk of data leakage in multi-request environments. |
A flaw was found in XNIO. The XNIO NotifierState that can cause a Stack Overflow Exception when the chain of notifier states becomes problematically large can lead to uncontrolled resource management and a possible denial of service (DoS). |
A vulnerability in the Eclipse Vert.x toolkit causes a memory leak in TCP servers configured with TLS and SNI support. When processing an unknown SNI server name assigned the default certificate instead of a mapped certificate, the SSL context is erroneously cached in the server name map, leading to memory exhaustion. This flaw allows attackers to send TLS client hello messages with fake server names, triggering a JVM out-of-memory error. |
A vulnerability in the Eclipse Vert.x toolkit results in a memory leak due to using Netty FastThreadLocal data structures. Specifically, when the Vert.x HTTP client establishes connections to different hosts, triggering the memory leak. The leak can be accelerated with intimate runtime knowledge, allowing an attacker to exploit this vulnerability. For instance, a server accepting arbitrary internet addresses could serve as an attack vector by connecting to these addresses, thereby accelerating the memory leak. |