Filtered by vendor Redhat
Subscriptions
Filtered by product Openshift Devspaces
Subscriptions
Total
21 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-9355 | 1 Redhat | 20 Amq Streams, Ansible Automation Platform, Container Native Virtualization and 17 more | 2024-11-15 | 6.5 Medium |
A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. | ||||
CVE-2024-1394 | 1 Redhat | 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more | 2024-11-13 | 7.5 High |
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. | ||||
CVE-2024-3727 | 1 Redhat | 18 Acm, Advanced Cluster Security, Ansible Automation Platform and 15 more | 2024-11-13 | 8.3 High |
A flaw was found in the github.com/containers/image library. This flaw allows attackers to trigger unexpected authenticated registry accesses on behalf of a victim user, causing resource exhaustion, local path traversal, and other attacks. | ||||
CVE-2023-45648 | 3 Apache, Debian, Redhat | 6 Tomcat, Debian Linux, Enterprise Linux and 3 more | 2024-11-12 | 5.3 Medium |
Improper Input Validation vulnerability in Apache Tomcat.Tomcat from 11.0.0-M1 through 11.0.0-M11, from 10.1.0-M1 through 10.1.13, from 9.0.0-M1 through 9.0.81 and from 8.5.0 through 8.5.93 did not correctly parse HTTP trailer headers. A specially crafted, invalid trailer header could cause Tomcat to treat a single request as multiple requests leading to the possibility of request smuggling when behind a reverse proxy. Users are recommended to upgrade to version 11.0.0-M12 onwards, 10.1.14 onwards, 9.0.81 onwards or 8.5.94 onwards, which fix the issue. | ||||
CVE-2023-3089 | 2 Devworkspace, Redhat | 18 1.0, Acm, Amq Streams and 15 more | 2024-10-24 | 7 High |
A compliance problem was found in the Red Hat OpenShift Container Platform. Red Hat discovered that, when FIPS mode was enabled, not all of the cryptographic modules in use were FIPS-validated. | ||||
CVE-2023-3635 | 2 Redhat, Squareup | 6 Amq Streams, Jboss Enterprise Bpms Platform, Jboss Fuse and 3 more | 2024-10-23 | 5.9 Medium |
GzipSource does not handle an exception that might be raised when parsing a malformed gzip buffer. This may lead to denial of service of the Okio client when handling a crafted GZIP archive, by using the GzipSource class. | ||||
CVE-2023-6378 | 2 Qos, Redhat | 5 Logback, Amq Broker, Camel Spring Boot and 2 more | 2024-10-11 | 7.1 High |
A serialization vulnerability in logback receiver component part of logback version 1.4.11 allows an attacker to mount a Denial-Of-Service attack by sending poisoned data. | ||||
CVE-2023-41080 | 3 Apache, Debian, Redhat | 7 Tomcat, Debian Linux, Amq Broker and 4 more | 2024-09-27 | 6.1 Medium |
URL Redirection to Untrusted Site ('Open Redirect') vulnerability in FORM authentication feature Apache Tomcat.This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.0-M10, from 10.1.0-M1 through 10.0.12, from 9.0.0-M1 through 9.0.79 and from 8.5.0 through 8.5.92. The vulnerability is limited to the ROOT (default) web application. | ||||
CVE-2024-30261 | 1 Redhat | 1 Openshift Devspaces | 2024-09-04 | 2.6 Low |
Undici is an HTTP/1.1 client, written from scratch for Node.js. An attacker can alter the `integrity` option passed to `fetch()`, allowing `fetch()` to accept requests as valid even if they have been tampered. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
CVE-2023-45288 | 1 Redhat | 27 Acm, Advanced Cluster Security, Ansible Automation Platform and 24 more | 2024-08-26 | 7.5 High |
An attacker may cause an HTTP/2 endpoint to read arbitrary amounts of header data by sending an excessive number of CONTINUATION frames. Maintaining HPACK state requires parsing and processing all HEADERS and CONTINUATION frames on a connection. When a request's headers exceed MaxHeaderBytes, no memory is allocated to store the excess headers, but they are still parsed. This permits an attacker to cause an HTTP/2 endpoint to read arbitrary amounts of header data, all associated with a request which is going to be rejected. These headers can include Huffman-encoded data which is significantly more expensive for the receiver to decode than for an attacker to send. The fix sets a limit on the amount of excess header frames we will process before closing a connection. | ||||
CVE-2024-39338 | 2 Axios, Redhat | 7 Axios, Network Observ Optr, Openshift and 4 more | 2024-08-23 | 4 Medium |
axios 1.7.2 allows SSRF via unexpected behavior where requests for path relative URLs get processed as protocol relative URLs. | ||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 364 Http Server, Opensearch Data Prepper, Apisix and 361 more | 2024-08-19 | 7.5 High |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
CVE-2021-0341 | 2 Google, Redhat | 7 Android, Amq Streams, Jboss Data Grid and 4 more | 2024-08-03 | 7.5 High |
In verifyHostName of OkHostnameVerifier.java, there is a possible way to accept a certificate for the wrong domain due to improperly used crypto. This could lead to remote information disclosure with no additional execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-8.1 Android-9 Android-10 Android-11Android ID: A-171980069 | ||||
CVE-2022-46175 | 3 Fedoraproject, Json5, Redhat | 9 Fedora, Json5, Logging and 6 more | 2024-08-03 | 7.1 High |
JSON5 is an extension to the popular JSON file format that aims to be easier to write and maintain by hand (e.g. for config files). The `parse` method of the JSON5 library before and including versions 1.0.1 and 2.2.1 does not restrict parsing of keys named `__proto__`, allowing specially crafted strings to pollute the prototype of the resulting object. This vulnerability pollutes the prototype of the object returned by `JSON5.parse` and not the global Object prototype, which is the commonly understood definition of Prototype Pollution. However, polluting the prototype of a single object can have significant security impact for an application if the object is later used in trusted operations. This vulnerability could allow an attacker to set arbitrary and unexpected keys on the object returned from `JSON5.parse`. The actual impact will depend on how applications utilize the returned object and how they filter unwanted keys, but could include denial of service, cross-site scripting, elevation of privilege, and in extreme cases, remote code execution. `JSON5.parse` should restrict parsing of `__proto__` keys when parsing JSON strings to objects. As a point of reference, the `JSON.parse` method included in JavaScript ignores `__proto__` keys. Simply changing `JSON5.parse` to `JSON.parse` in the examples above mitigates this vulnerability. This vulnerability is patched in json5 versions 1.0.2, 2.2.2, and later. | ||||
CVE-2022-28948 | 3 Netapp, Redhat, Yaml Project | 4 Astra Trident, Cryostat, Openshift Devspaces and 1 more | 2024-08-03 | 7.5 High |
An issue in the Unmarshal function in Go-Yaml v3 causes the program to crash when attempting to deserialize invalid input. | ||||
CVE-2022-21698 | 4 Fedoraproject, Prometheus, Rdo Project and 1 more | 17 Extra Packages For Enterprise Linux, Fedora, Client Golang and 14 more | 2024-08-03 | 7.5 High |
client_golang is the instrumentation library for Go applications in Prometheus, and the promhttp package in client_golang provides tooling around HTTP servers and clients. In client_golang prior to version 1.11.1, HTTP server is susceptible to a Denial of Service through unbounded cardinality, and potential memory exhaustion, when handling requests with non-standard HTTP methods. In order to be affected, an instrumented software must use any of `promhttp.InstrumentHandler*` middleware except `RequestsInFlight`; not filter any specific methods (e.g GET) before middleware; pass metric with `method` label name to our middleware; and not have any firewall/LB/proxy that filters away requests with unknown `method`. client_golang version 1.11.1 contains a patch for this issue. Several workarounds are available, including removing the `method` label name from counter/gauge used in the InstrumentHandler; turning off affected promhttp handlers; adding custom middleware before promhttp handler that will sanitize the request method given by Go http.Request; and using a reverse proxy or web application firewall, configured to only allow a limited set of methods. | ||||
CVE-2022-3064 | 2 Redhat, Yaml Project | 7 Enterprise Linux, Openshift, Openshift Devspaces and 4 more | 2024-08-03 | 7.5 High |
Parsing malicious or large YAML documents can consume excessive amounts of CPU or memory. | ||||
CVE-2023-39325 | 4 Fedoraproject, Golang, Netapp and 1 more | 53 Fedora, Go, Http2 and 50 more | 2024-08-02 | 7.5 High |
A malicious HTTP/2 client which rapidly creates requests and immediately resets them can cause excessive server resource consumption. While the total number of requests is bounded by the http2.Server.MaxConcurrentStreams setting, resetting an in-progress request allows the attacker to create a new request while the existing one is still executing. With the fix applied, HTTP/2 servers now bound the number of simultaneously executing handler goroutines to the stream concurrency limit (MaxConcurrentStreams). New requests arriving when at the limit (which can only happen after the client has reset an existing, in-flight request) will be queued until a handler exits. If the request queue grows too large, the server will terminate the connection. This issue is also fixed in golang.org/x/net/http2 for users manually configuring HTTP/2. The default stream concurrency limit is 250 streams (requests) per HTTP/2 connection. This value may be adjusted using the golang.org/x/net/http2 package; see the Server.MaxConcurrentStreams setting and the ConfigureServer function. | ||||
CVE-2024-30260 | 1 Redhat | 1 Openshift Devspaces | 2024-08-02 | 3.9 Low |
Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici cleared Authorization and Proxy-Authorization headers for `fetch()`, but did not clear them for `undici.request()`. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
CVE-2024-22234 | 1 Redhat | 2 Openshift Devspaces, Rhboac Hawtio | 2024-08-01 | 7.4 High |
In Spring Security, versions 6.1.x prior to 6.1.7 and versions 6.2.x prior to 6.2.2, an application is vulnerable to broken access control when it directly uses the AuthenticationTrustResolver.isFullyAuthenticated(Authentication) method. Specifically, an application is vulnerable if: * The application uses AuthenticationTrustResolver.isFullyAuthenticated(Authentication) directly and a null authentication parameter is passed to it resulting in an erroneous true return value. An application is not vulnerable if any of the following is true: * The application does not use AuthenticationTrustResolver.isFullyAuthenticated(Authentication) directly. * The application does not pass null to AuthenticationTrustResolver.isFullyAuthenticated * The application only uses isFullyAuthenticated via Method Security https://docs.spring.io/spring-security/reference/servlet/authorization/method-security.html or HTTP Request Security https://docs.spring.io/spring-security/reference/servlet/authorization/authorize-http-requests.html |