| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A unauthenticated reflected XSS vulnerability in VirtueMart 1.0.0-4.4.10 for Joomla was discovered. |
| A flaw was found in Keycloak. The Keycloak guides recommend to not expose /admin path to the outside in case the installation is using a proxy. The issue occurs at least via ha-proxy, as it can be tricked to using relative/non-normalized paths to access the /admin application path relative to /realms which is expected to be exposed. |
| IBM QRadar SIEM 7.5 through 7.5.0 Update Pack 13 Independent Fix 02 is vulnerable to privilege escalation due to improper privilege assignment to an update script. |
| Relative Path Traversal vulnerability in Apache Tomcat.
The fix for bug 60013 introduced a regression where the rewritten URL was normalized before it was decoded. This introduced the possibility that, for rewrite rules that rewrite query parameters to the URL, an attacker could manipulate the request URI to bypass security constraints including the protection for /WEB-INF/ and /META-INF/. If PUT requests were also enabled then malicious files could be uploaded leading to remote code execution. PUT requests are normally limited to trusted users and it is considered unlikely that PUT requests would be enabled in conjunction with a rewrite that manipulated the URI.
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.10, from 10.1.0-M1 through 10.1.44, from 9.0.0.M11 through 9.0.108.
The following versions were EOL at the time the CVE was created but are
known to be affected: 8.5.6 though 8.5.100. Other, older, EOL versions may also be affected.
Users are recommended to upgrade to version 11.0.11 or later, 10.1.45 or later or 9.0.109 or later, which fix the issue. |
| A missing authorization vulnerability affecting DELMIA Apriso from Release 2020 through Release 2025 could allow an attacker to gain privileged access to the application. |
| An Improper Control of Generation of Code (Code Injection) vulnerability affecting DELMIA Apriso from Release 2020 through Release 2025 could allow an attacker to execute arbitrary code. |
| Docker Desktop Installer.exe is vulnerable to DLL hijacking due to insecure DLL search order. The installer searches for required DLLs in the user's Downloads folder before checking system directories, allowing local privilege escalation through malicious DLL placement.This issue affects Docker Desktop: through 4.48.0. |
| An authenticated admin user with access to both the management WebUI and command line interface on a Firebox can enable a diagnostic debug shell by uploading a platform and version-specific diagnostic package and executing a leftover diagnostic command.
This issue affects Fireware OS: from 12.0 before 12.11.2. |
| A flaw has been found in MaxSite CMS up to 109. This issue affects some unknown processing of the file application/maxsite/admin/plugins/editor_files/save-file-ajax.php. Executing manipulation of the argument file_path/content can lead to unrestricted upload. The attack can be executed remotely. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability was detected in MaxSite CMS up to 109. This vulnerability affects unknown code of the file application/maxsite/admin/plugins/auto_post/uploads-require-maxsite.php of the component HTTP Header Handler. Performing manipulation of the argument X-Requested-FileName/X-Requested-FileUpDir results in unrestricted upload. Remote exploitation of the attack is possible. The exploit is now public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Fix warnings during S3 suspend
The enable_gpe_wakeup() function calls acpi_enable_all_wakeup_gpes(),
and the later one may call the preempt_schedule_common() function,
resulting in a thread switch and causing the CPU to be in an interrupt
enabled state after the enable_gpe_wakeup() function returns, leading
to the warnings as follow.
[ C0] WARNING: ... at kernel/time/timekeeping.c:845 ktime_get+0xbc/0xc8
[ C0] ...
[ C0] Call Trace:
[ C0] [<90000000002243b4>] show_stack+0x64/0x188
[ C0] [<900000000164673c>] dump_stack_lvl+0x60/0x88
[ C0] [<90000000002687e4>] __warn+0x8c/0x148
[ C0] [<90000000015e9978>] report_bug+0x1c0/0x2b0
[ C0] [<90000000016478e4>] do_bp+0x204/0x3b8
[ C0] [<90000000025b1924>] exception_handlers+0x1924/0x10000
[ C0] [<9000000000343bbc>] ktime_get+0xbc/0xc8
[ C0] [<9000000000354c08>] tick_sched_timer+0x30/0xb0
[ C0] [<90000000003408e0>] __hrtimer_run_queues+0x160/0x378
[ C0] [<9000000000341f14>] hrtimer_interrupt+0x144/0x388
[ C0] [<9000000000228348>] constant_timer_interrupt+0x38/0x48
[ C0] [<90000000002feba4>] __handle_irq_event_percpu+0x64/0x1e8
[ C0] [<90000000002fed48>] handle_irq_event_percpu+0x20/0x80
[ C0] [<9000000000306b9c>] handle_percpu_irq+0x5c/0x98
[ C0] [<90000000002fd4a0>] generic_handle_domain_irq+0x30/0x48
[ C0] [<9000000000d0c7b0>] handle_cpu_irq+0x70/0xa8
[ C0] [<9000000001646b30>] handle_loongarch_irq+0x30/0x48
[ C0] [<9000000001646bc8>] do_vint+0x80/0xe0
[ C0] [<90000000002aea1c>] finish_task_switch.isra.0+0x8c/0x2a8
[ C0] [<900000000164e34c>] __schedule+0x314/0xa48
[ C0] [<900000000164ead8>] schedule+0x58/0xf0
[ C0] [<9000000000294a2c>] worker_thread+0x224/0x498
[ C0] [<900000000029d2f0>] kthread+0xf8/0x108
[ C0] [<9000000000221f28>] ret_from_kernel_thread+0xc/0xa4
[ C0]
[ C0] ---[ end trace 0000000000000000 ]---
The root cause is acpi_enable_all_wakeup_gpes() uses a mutex to protect
acpi_hw_enable_all_wakeup_gpes(), and acpi_ut_acquire_mutex() may cause
a thread switch. Since there is no longer concurrent execution during
loongarch_acpi_suspend(), we can call acpi_hw_enable_all_wakeup_gpes()
directly in enable_gpe_wakeup().
The solution is similar to commit 22db06337f590d01 ("ACPI: sleep: Avoid
breaking S3 wakeup due to might_sleep()"). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: rcar-ep: Fix incorrect variable used when calling devm_request_mem_region()
The rcar_pcie_parse_outbound_ranges() uses the devm_request_mem_region()
macro to request a needed resource. A string variable that lives on the
stack is then used to store a dynamically computed resource name, which
is then passed on as one of the macro arguments. This can lead to
undefined behavior.
Depending on the current contents of the memory, the manifestations of
errors may vary. One possible output may be as follows:
$ cat /proc/iomem
30000000-37ffffff :
38000000-3fffffff :
Sometimes, garbage may appear after the colon.
In very rare cases, if no NULL-terminator is found in memory, the system
might crash because the string iterator will overrun which can lead to
access of unmapped memory above the stack.
Thus, fix this by replacing outbound_name with the name of the previously
requested resource. With the changes applied, the output will be as
follows:
$ cat /proc/iomem
30000000-37ffffff : memory2
38000000-3fffffff : memory3
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rtrs: Add missing deinit() call
A warning is triggered when repeatedly connecting and disconnecting the
rnbd:
list_add corruption. prev->next should be next (ffff88800b13e480), but was ffff88801ecd1338. (prev=ffff88801ecd1340).
WARNING: CPU: 1 PID: 36562 at lib/list_debug.c:32 __list_add_valid_or_report+0x7f/0xa0
Workqueue: ib_cm cm_work_handler [ib_cm]
RIP: 0010:__list_add_valid_or_report+0x7f/0xa0
? __list_add_valid_or_report+0x7f/0xa0
ib_register_event_handler+0x65/0x93 [ib_core]
rtrs_srv_ib_dev_init+0x29/0x30 [rtrs_server]
rtrs_ib_dev_find_or_add+0x124/0x1d0 [rtrs_core]
__alloc_path+0x46c/0x680 [rtrs_server]
? rtrs_rdma_connect+0xa6/0x2d0 [rtrs_server]
? rcu_is_watching+0xd/0x40
? __mutex_lock+0x312/0xcf0
? get_or_create_srv+0xad/0x310 [rtrs_server]
? rtrs_rdma_connect+0xa6/0x2d0 [rtrs_server]
rtrs_rdma_connect+0x23c/0x2d0 [rtrs_server]
? __lock_release+0x1b1/0x2d0
cma_cm_event_handler+0x4a/0x1a0 [rdma_cm]
cma_ib_req_handler+0x3a0/0x7e0 [rdma_cm]
cm_process_work+0x28/0x1a0 [ib_cm]
? _raw_spin_unlock_irq+0x2f/0x50
cm_req_handler+0x618/0xa60 [ib_cm]
cm_work_handler+0x71/0x520 [ib_cm]
Commit 667db86bcbe8 ("RDMA/rtrs: Register ib event handler") introduced a
new element .deinit but never used it at all. Fix it by invoking the
`deinit()` to appropriately unregister the IB event handler. |
| In the Linux kernel, the following vulnerability has been resolved:
net: let net.core.dev_weight always be non-zero
The following problem was encountered during stability test:
(NULL net_device): NAPI poll function process_backlog+0x0/0x530 \
returned 1, exceeding its budget of 0.
------------[ cut here ]------------
list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \
next=ffff88905f746e40.
WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \
__list_add_valid_or_report+0xf3/0x130
CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+
RIP: 0010:__list_add_valid_or_report+0xf3/0x130
Call Trace:
? __warn+0xcd/0x250
? __list_add_valid_or_report+0xf3/0x130
enqueue_to_backlog+0x923/0x1070
netif_rx_internal+0x92/0x2b0
__netif_rx+0x15/0x170
loopback_xmit+0x2ef/0x450
dev_hard_start_xmit+0x103/0x490
__dev_queue_xmit+0xeac/0x1950
ip_finish_output2+0x6cc/0x1620
ip_output+0x161/0x270
ip_push_pending_frames+0x155/0x1a0
raw_sendmsg+0xe13/0x1550
__sys_sendto+0x3bf/0x4e0
__x64_sys_sendto+0xdc/0x1b0
do_syscall_64+0x5b/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reproduction command is as follows:
sysctl -w net.core.dev_weight=0
ping 127.0.0.1
This is because when the napi's weight is set to 0, process_backlog() may
return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this
napi to be re-polled in net_rx_action() until __do_softirq() times out.
Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can
be retriggered in enqueue_to_backlog(), causing this issue.
Making the napi's weight always non-zero solves this problem.
Triggering this issue requires system-wide admin (setting is
not namespaced). |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix queue freeze vs limits lock order in sysfs store methods
queue_attr_store() always freezes a device queue before calling the
attribute store operation. For attributes that control queue limits, the
store operation will also lock the queue limits with a call to
queue_limits_start_update(). However, some drivers (e.g. SCSI sd) may
need to issue commands to a device to obtain limit values from the
hardware with the queue limits locked. This creates a potential ABBA
deadlock situation if a user attempts to modify a limit (thus freezing
the device queue) while the device driver starts a revalidation of the
device queue limits.
Avoid such deadlock by not freezing the queue before calling the
->store_limit() method in struct queue_sysfs_entry and instead use the
queue_limits_commit_update_frozen helper to freeze the queue after taking
the limits lock.
This also removes taking the sysfs lock for the store_limit method as
it doesn't protect anything here, but creates even more nesting.
Hopefully it will go away from the actual sysfs methods entirely soon.
(commit log adapted from a similar patch from Damien Le Moal) |
| In the Linux kernel, the following vulnerability has been resolved:
net: xdp: Disallow attaching device-bound programs in generic mode
Device-bound programs are used to support RX metadata kfuncs. These
kfuncs are driver-specific and rely on the driver context to read the
metadata. This means they can't work in generic XDP mode. However, there
is no check to disallow such programs from being attached in generic
mode, in which case the metadata kfuncs will be called in an invalid
context, leading to crashes.
Fix this by adding a check to disallow attaching device-bound programs
in generic mode. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: class: Fix wild pointer dereferences in API class_dev_iter_next()
There are a potential wild pointer dereferences issue regarding APIs
class_dev_iter_(init|next|exit)(), as explained by below typical usage:
// All members of @iter are wild pointers.
struct class_dev_iter iter;
// class_dev_iter_init(@iter, @class, ...) checks parameter @class for
// potential class_to_subsys() error, and it returns void type and does
// not initialize its output parameter @iter, so caller can not detect
// the error and continues to invoke class_dev_iter_next(@iter) even if
// @iter still contains wild pointers.
class_dev_iter_init(&iter, ...);
// Dereference these wild pointers in @iter here once suffer the error.
while (dev = class_dev_iter_next(&iter)) { ... };
// Also dereference these wild pointers here.
class_dev_iter_exit(&iter);
Actually, all callers of these APIs have such usage pattern in kernel tree.
Fix by:
- Initialize output parameter @iter by memset() in class_dev_iter_init()
and give callers prompt by pr_crit() for the error.
- Check if @iter is valid in class_dev_iter_next(). |
| In the Linux kernel, the following vulnerability has been resolved:
timers/migration: Fix off-by-one root mis-connection
Before attaching a new root to the old root, the children counter of the
new root is checked to verify that only the upcoming CPU's top group have
been connected to it. However since the recently added commit b729cc1ec21a
("timers/migration: Fix another race between hotplug and idle entry/exit")
this check is not valid anymore because the old root is pre-accounted
as a child to the new root. Therefore after connecting the upcoming
CPU's top group to the new root, the children count to be expected must
be 2 and not 1 anymore.
This omission results in the old root to not be connected to the new
root. Then eventually the system may run with more than one top level,
which defeats the purpose of a single idle migrator.
Also the old root is pre-accounted but not connected upon the new root
creation. But it can be connected to the new root later on. Therefore
the old root may be accounted twice to the new root. The propagation of
such overcommit can end up creating a double final top-level root with a
groupmask incorrectly initialized. Although harmless given that the final
top level roots will never have a parent to walk up to, this oddity
opportunistically reported the core issue:
WARNING: CPU: 8 PID: 0 at kernel/time/timer_migration.c:543 tmigr_requires_handle_remote
CPU: 8 UID: 0 PID: 0 Comm: swapper/8
RIP: 0010:tmigr_requires_handle_remote
Call Trace:
<IRQ>
? tmigr_requires_handle_remote
? hrtimer_run_queues
update_process_times
tick_periodic
tick_handle_periodic
__sysvec_apic_timer_interrupt
sysvec_apic_timer_interrupt
</IRQ>
Fix the problem by taking the old root into account in the children count
of the new root so the connection is not omitted.
Also warn when more than one top level group exists to better detect
similar issues in the future. |
| In the Linux kernel, the following vulnerability has been resolved:
hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING
hrtimers are migrated away from the dying CPU to any online target at
the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers
handling tasks involved in the CPU hotplug forward progress.
However wakeups can still be performed by the outgoing CPU after
CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being
armed. Depending on several considerations (crystal ball power management
based election, earliest timer already enqueued, timer migration enabled or
not), the target may eventually be the current CPU even if offline. If that
happens, the timer is eventually ignored.
The most notable example is RCU which had to deal with each and every of
those wake-ups by deferring them to an online CPU, along with related
workarounds:
_ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying)
_ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU)
_ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq)
The problem isn't confined to RCU though as the stop machine kthread
(which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end
of its work through cpu_stop_signal_done() and performs a wake up that
eventually arms the deadline server timer:
WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0
CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted
Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0
RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0
Call Trace:
<TASK>
start_dl_timer
enqueue_dl_entity
dl_server_start
enqueue_task_fair
enqueue_task
ttwu_do_activate
try_to_wake_up
complete
cpu_stopper_thread
Instead of providing yet another bandaid to work around the situation, fix
it in the hrtimers infrastructure instead: always migrate away a timer to
an online target whenever it is enqueued from an offline CPU.
This will also allow to revert all the above RCU disgraceful hacks. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/compaction: fix UBSAN shift-out-of-bounds warning
syzkaller reported a UBSAN shift-out-of-bounds warning of (1UL << order)
in isolate_freepages_block(). The bogus compound_order can be any value
because it is union with flags. Add back the MAX_PAGE_ORDER check to fix
the warning. |