CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A command injection flaw was found in the text editor Emacs. It could allow a remote, unauthenticated attacker to execute arbitrary shell commands on a vulnerable system. Exploitation is possible by tricking users into visiting a specially crafted website or an HTTP URL with a redirect. |
A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time. |
A buffer overflow flaw was found in X.Org and Xwayland. The code in XkbVModMaskText() allocates a fixed-sized buffer on the stack and copies the names of the virtual modifiers to that buffer. The code fails to check the bounds of the buffer and would copy the data regardless of the size. |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Networking). Supported versions that are affected are Oracle Java SE: 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
Vulnerability in the Oracle Java SE, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Concurrency). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
A vulnerability was found in Performance Co-Pilot (PCP). This flaw can only be exploited if an attacker has access to a compromised PCP system account. The issue is related to the pmpost tool, which is used to log messages in the system. Under certain conditions, it runs with high-level privileges. |
A vulnerability was found in Performance Co-Pilot (PCP). This flaw allows an attacker to send specially crafted data to the system, which could cause the program to misbehave or crash. |
A flaw was found in libsoup. It is vulnerable to memory leaks in the soup_header_parse_quality_list() function when parsing a quality list that contains elements with all zeroes. |
A flaw was found in libsoup, where the soup_message_headers_get_content_disposition() function is vulnerable to a NULL pointer dereference. This flaw allows a malicious HTTP peer to crash a libsoup client or server that uses this function. |
A use-after-free type vulnerability was found in libsoup, in the soup_message_headers_get_content_disposition() function. This flaw allows a malicious HTTP client to cause memory corruption in the libsoup server. |
A flaw was found in grub2. During the network boot process, when trying to search for the configuration file, grub copies data from a user controlled environment variable into an internal buffer using the grub_strcpy() function. During this step, it fails to consider the environment variable length when allocating the internal buffer, resulting in an out-of-bounds write. If correctly exploited, this issue may result in remote code execution through the same network segment grub is searching for the boot information, which can be used to by-pass secure boot protections. |
Squid is a caching proxy for the Web. Due to an Uncontrolled Recursion bug in versions 2.6 through 2.7.STABLE9, versions 3.1 through 5.9, and versions 6.0.1 through 6.5, Squid may be vulnerable to a Denial of Service attack against HTTP Request parsing. This problem allows a remote client to perform Denial of Service attack by sending a large X-Forwarded-For header when the follow_x_forwarded_for feature is configured. This bug is fixed by Squid version 6.6. In addition, patches addressing this problem for the stable releases can be found in Squid's patch archives. |
A flaw was found in libsoup, where the soup_headers_parse_request() function may be vulnerable to an out-of-bound read. This flaw allows a malicious user to use a specially crafted HTTP request to crash the HTTP server. |
A flaw was found in libsoup. When libsoup clients encounter an HTTP redirect, they mistakenly send the HTTP Authorization header to the new host that the redirection points to. This allows the new host to impersonate the user to the original host that issued the redirect. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes
When moving a station out of a VLAN and deleting the VLAN afterwards, the
fast_rx entry still holds a pointer to the VLAN's netdev, which can cause
use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx
after the VLAN change. |
In the Linux kernel, the following vulnerability has been resolved:
iommu: Fix potential use-after-free during probe
Kasan has reported the following use after free on dev->iommu.
when a device probe fails and it is in process of freeing dev->iommu
in dev_iommu_free function, a deferred_probe_work_func runs in parallel
and tries to access dev->iommu->fwspec in of_iommu_configure path thus
causing use after free.
BUG: KASAN: use-after-free in of_iommu_configure+0xb4/0x4a4
Read of size 8 at addr ffffff87a2f1acb8 by task kworker/u16:2/153
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x33c
show_stack+0x18/0x24
dump_stack_lvl+0x16c/0x1e0
print_address_description+0x84/0x39c
__kasan_report+0x184/0x308
kasan_report+0x50/0x78
__asan_load8+0xc0/0xc4
of_iommu_configure+0xb4/0x4a4
of_dma_configure_id+0x2fc/0x4d4
platform_dma_configure+0x40/0x5c
really_probe+0x1b4/0xb74
driver_probe_device+0x11c/0x228
__device_attach_driver+0x14c/0x304
bus_for_each_drv+0x124/0x1b0
__device_attach+0x25c/0x334
device_initial_probe+0x24/0x34
bus_probe_device+0x78/0x134
deferred_probe_work_func+0x130/0x1a8
process_one_work+0x4c8/0x970
worker_thread+0x5c8/0xaec
kthread+0x1f8/0x220
ret_from_fork+0x10/0x18
Allocated by task 1:
____kasan_kmalloc+0xd4/0x114
__kasan_kmalloc+0x10/0x1c
kmem_cache_alloc_trace+0xe4/0x3d4
__iommu_probe_device+0x90/0x394
probe_iommu_group+0x70/0x9c
bus_for_each_dev+0x11c/0x19c
bus_iommu_probe+0xb8/0x7d4
bus_set_iommu+0xcc/0x13c
arm_smmu_bus_init+0x44/0x130 [arm_smmu]
arm_smmu_device_probe+0xb88/0xc54 [arm_smmu]
platform_drv_probe+0xe4/0x13c
really_probe+0x2c8/0xb74
driver_probe_device+0x11c/0x228
device_driver_attach+0xf0/0x16c
__driver_attach+0x80/0x320
bus_for_each_dev+0x11c/0x19c
driver_attach+0x38/0x48
bus_add_driver+0x1dc/0x3a4
driver_register+0x18c/0x244
__platform_driver_register+0x88/0x9c
init_module+0x64/0xff4 [arm_smmu]
do_one_initcall+0x17c/0x2f0
do_init_module+0xe8/0x378
load_module+0x3f80/0x4a40
__se_sys_finit_module+0x1a0/0x1e4
__arm64_sys_finit_module+0x44/0x58
el0_svc_common+0x100/0x264
do_el0_svc+0x38/0xa4
el0_svc+0x20/0x30
el0_sync_handler+0x68/0xac
el0_sync+0x160/0x180
Freed by task 1:
kasan_set_track+0x4c/0x84
kasan_set_free_info+0x28/0x4c
____kasan_slab_free+0x120/0x15c
__kasan_slab_free+0x18/0x28
slab_free_freelist_hook+0x204/0x2fc
kfree+0xfc/0x3a4
__iommu_probe_device+0x284/0x394
probe_iommu_group+0x70/0x9c
bus_for_each_dev+0x11c/0x19c
bus_iommu_probe+0xb8/0x7d4
bus_set_iommu+0xcc/0x13c
arm_smmu_bus_init+0x44/0x130 [arm_smmu]
arm_smmu_device_probe+0xb88/0xc54 [arm_smmu]
platform_drv_probe+0xe4/0x13c
really_probe+0x2c8/0xb74
driver_probe_device+0x11c/0x228
device_driver_attach+0xf0/0x16c
__driver_attach+0x80/0x320
bus_for_each_dev+0x11c/0x19c
driver_attach+0x38/0x48
bus_add_driver+0x1dc/0x3a4
driver_register+0x18c/0x244
__platform_driver_register+0x88/0x9c
init_module+0x64/0xff4 [arm_smmu]
do_one_initcall+0x17c/0x2f0
do_init_module+0xe8/0x378
load_module+0x3f80/0x4a40
__se_sys_finit_module+0x1a0/0x1e4
__arm64_sys_finit_module+0x44/0x58
el0_svc_common+0x100/0x264
do_el0_svc+0x38/0xa4
el0_svc+0x20/0x30
el0_sync_handler+0x68/0xac
el0_sync+0x160/0x180
Fix this by setting dev->iommu to NULL first and
then freeing dev_iommu structure in dev_iommu_free
function. |
In the Linux kernel, the following vulnerability has been resolved:
xprtrdma: fix pointer derefs in error cases of rpcrdma_ep_create
If there are failures then we must not leave the non-NULL pointers with
the error value, otherwise `rpcrdma_ep_destroy` gets confused and tries
free them, resulting in an Oops. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpt3sas: Fix use-after-free warning
Fix the following use-after-free warning which is observed during
controller reset:
refcount_t: underflow; use-after-free.
WARNING: CPU: 23 PID: 5399 at lib/refcount.c:28 refcount_warn_saturate+0xa6/0xf0 |