Filtered by CWE-350
Total 11 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-21012 2 Oracle, Redhat 9 Graalvm, Graalvm For Jdk, Java Se and 6 more 2024-11-13 3.7 Low
Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Networking). Supported versions that are affected are Oracle Java SE: 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N).
CVE-2021-34561 1 Pepperl-fuchs 4 Wha-gw-f2d2-0-as-z2-eth, Wha-gw-f2d2-0-as-z2-eth.eip, Wha-gw-f2d2-0-as-z2-eth.eip Firmware and 1 more 2024-09-17 7.5 High
In PEPPERL+FUCHS WirelessHART-Gateway <= 3.0.8 serious issue exists, if the application is not externally accessible or uses IP-based access restrictions. Attackers can use DNS Rebinding to bypass any IP or firewall based access restrictions that may be in place, by proxying through their target's browser.
CVE-2018-7160 2 Nodejs, Redhat 2 Node.js, Rhel Software Collections 2024-09-17 8.8 High
The Node.js inspector, in 6.x and later is vulnerable to a DNS rebinding attack which could be exploited to perform remote code execution. An attack is possible from malicious websites open in a web browser on the same computer, or another computer with network access to the computer running the Node.js process. A malicious website could use a DNS rebinding attack to trick the web browser to bypass same-origin-policy checks and to allow HTTP connections to localhost or to hosts on the local network. If a Node.js process with the debug port active is running on localhost or on a host on the local network, the malicious website could connect to it as a debugger, and get full code execution access.
CVE-2017-0902 4 Canonical, Debian, Redhat and 1 more 11 Ubuntu Linux, Debian Linux, Enterprise Linux and 8 more 2024-09-17 N/A
RubyGems version 2.6.12 and earlier is vulnerable to a DNS hijacking vulnerability that allows a MITM attacker to force the RubyGems client to download and install gems from a server that the attacker controls.
CVE-2024-42364 1 Gethomepage 1 Homepage 2024-09-12 6.5 Medium
Homepage is a highly customizable homepage with Docker and service API integrations. The default setup of homepage 0.9.1 is vulnerable to DNS rebinding. Homepage is setup without certificate and authentication by default, leaving it to vulnerable to DNS rebinding. In this attack, an attacker will ask a user to visit his/her website. The attacker website will then change the DNS records of their domain from their IP address to the internal IP address of the homepage instance. To tell which IP addresses are valid, we can rebind a subdomain to each IP address we want to check, and see if there is a response. Once potential candidates have been found, the attacker can launch the attack by reading the response of the webserver after the IP address has changed. When the attacker domain is fetched, the response will be from the homepage instance, not the attacker website, because the IP address has been changed. Due to a lack of authentication, a user’s private information such as API keys (fixed after first report) and other private information can then be extracted by the attacker website.
CVE-2020-11091 1 Weave 1 Weave Net 2024-08-04 5.8 Medium
In Weave Net before version 2.6.3, an attacker able to run a process as root in a container is able to respond to DNS requests from the host and thereby insert themselves as a fake service. In a cluster with an IPv4 internal network, if IPv6 is not totally disabled on the host (via ipv6.disable=1 on the kernel cmdline), it will be either unconfigured or configured on some interfaces, but it's pretty likely that ipv6 forwarding is disabled, ie /proc/sys/net/ipv6/conf//forwarding == 0. Also by default, /proc/sys/net/ipv6/conf//accept_ra == 1. The combination of these 2 sysctls means that the host accepts router advertisements and configure the IPv6 stack using them. By sending rogue router advertisements, an attacker can reconfigure the host to redirect part or all of the IPv6 traffic of the host to the attacker controlled container. Even if there was no IPv6 traffic before, if the DNS returns A (IPv4) and AAAA (IPv6) records, many HTTP libraries will try to connect via IPv6 first then fallback to IPv4, giving an opportunity to the attacker to respond. If by chance you also have on the host a vulnerability like last year's RCE in apt (CVE-2019-3462), you can now escalate to the host. Weave Net version 2.6.3 disables the accept_ra option on the veth devices that it creates.
CVE-2021-22884 6 Fedoraproject, Netapp, Nodejs and 3 more 16 Fedora, Active Iq Unified Manager, E-series Performance Analyzer and 13 more 2024-08-03 7.5 High
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160.
CVE-2022-43548 3 Debian, Nodejs, Redhat 5 Debian Linux, Node.js, Enterprise Linux and 2 more 2024-08-03 8.1 High
A OS Command Injection vulnerability exists in Node.js versions <14.21.1, <16.18.1, <18.12.1, <19.0.1 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.The fix for this issue in https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32212 was incomplete and this new CVE is to complete the fix.
CVE-2022-22364 1 Ibm 1 Cognos Controller 2024-08-03 5.3 Medium
IBM Cognos Controller 10.4.1, 10.4.2, and 11.0.0 is vulnerable to external service interaction attack, caused by improper validation of user-supplied input. A remote attacker could exploit this vulnerability to induce the application to perform server-side DNS lookups or HTTP requests to arbitrary domain names. By submitting suitable payloads, an attacker can cause the application server to attack other systems that it can interact with. IBM X-Force ID: 220903.
CVE-2023-52235 2024-08-02 8.8 High
SpaceX Starlink Wi-Fi router GEN 2 before 2023.53.0 and Starlink Dish before 07dd2798-ff15-4722-a9ee-de28928aed34 allow CSRF (e.g., for a reboot) via a DNS Rebinding attack.
CVE-2023-32020 1 Microsoft 8 Windows Server 2008, Windows Server 2008 R2, Windows Server 2008 Sp2 and 5 more 2024-08-02 5.6 Medium
Windows DNS Spoofing Vulnerability