| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Wasmtime is a runtime for WebAssembly. Prior to version 38.0.4, 37.0.3, 36.0.3, and 24.0.5, Wasmtime's Rust embedder API contains an unsound interaction where a WebAssembly shared linear memory could be viewed as a type which provides safe access to the host (Rust) to the contents of the linear memory. This is not sound for shared linear memories, which could be modified in parallel, and this could lead to a data race in the host. Patch releases have been issued for all supported versions of Wasmtime, notably: 24.0.5, 36.0.3, 37.0.3, and 38.0.4. These releases reject creation of shared memories via `Memory::new` and shared memories are now excluded from core dumps. As a workaround, eembeddings affected by this issue should use `SharedMemory::new` instead of `Memory::new` to create shared memories. Affected embeddings should also disable core dumps if they are unable to upgrade. Note that core dumps are disabled by default but the wasm threads proposal (and shared memory) is enabled by default. |
| Inappropriate implementation in DevTools in Google Chrome prior to 126.0.6478.182 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: High) |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Ancillary Function Driver for WinSock allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Wireless Provisioning System allows an authorized attacker to elevate privileges locally. |
| Double free in Microsoft Wireless Provisioning System allows an authorized attacker to elevate privileges locally. |
| A vulnerability was found in systemd-coredump. This flaw allows an attacker to force a SUID process to crash and replace it with a non-SUID binary to access the original's privileged process coredump, allowing the attacker to read sensitive data, such as /etc/shadow content, loaded by the original process.
A SUID binary or process has a special type of permission, which allows the process to run with the file owner's permissions, regardless of the user executing the binary. This allows the process to access more restricted data than unprivileged users or processes would be able to. An attacker can leverage this flaw by forcing a SUID process to crash and force the Linux kernel to recycle the process PID before systemd-coredump can analyze the /proc/pid/auxv file. If the attacker wins the race condition, they gain access to the original's SUID process coredump file. They can read sensitive content loaded into memory by the original binary, affecting data confidentiality. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Kernel allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
ieee802154/adf7242: defer destroy_workqueue call
There is a possible race condition (use-after-free) like below
(FREE) | (USE)
adf7242_remove | adf7242_channel
cancel_delayed_work_sync |
destroy_workqueue (1) | adf7242_cmd_rx
| mod_delayed_work (2)
|
The root cause for this race is that the upper layer (ieee802154) is
unaware of this detaching event and the function adf7242_channel can
be called without any checks.
To fix this, we can add a flag write at the beginning of adf7242_remove
and add flag check in adf7242_channel. Or we can just defer the
destructive operation like other commit 3e0588c291d6 ("hamradio: defer
ax25 kfree after unregister_netdev") which let the
ieee802154_unregister_hw() to handle the synchronization. This patch
takes the second option.
runs") |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows DirectX allows an authorized attacker to deny service over a network. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Speech allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Speech allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Time-of-check time-of-use race condition for some ACAT before version 3.13 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a high complexity attack may enable denial of service. This result may potentially occur via local access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: start MHI channel after endpoit creation
MHI channel may generates event/interrupt right after enabling.
It may leads to 2 race conditions issues.
1)
Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check:
if (!qdev || mhi_res->transaction_status)
return;
Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at
this moment. In this situation qrtr-ns will be unable to enumerate
services in device.
---------------------------------------------------------------
2)
Such event may come at the moment after dev_set_drvdata() and
before qrtr_endpoint_register(). In this case kernel will panic with
accessing wrong pointer at qcom_mhi_qrtr_dl_callback():
rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr,
mhi_res->bytes_xferd);
Because endpoint is not created yet.
--------------------------------------------------------------
So move mhi_prepare_for_transfer_autoqueue after endpoint creation
to fix it. |
| Race condition in the Graphics component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, and Firefox ESR < 115.30. |
| Race in V8 in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Race in Storage in Google Chrome on Windows prior to 142.0.7444.59 allowed a remote attacker who convinced a user to engage in specific UI gestures to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: fsl_lpuart: fix race on RX DMA shutdown
From time to time DMA completion can come in the middle of DMA shutdown:
<process ctx>: <IRQ>:
lpuart32_shutdown()
lpuart_dma_shutdown()
del_timer_sync()
lpuart_dma_rx_complete()
lpuart_copy_rx_to_tty()
mod_timer()
lpuart_dma_rx_free()
When the timer fires a bit later, sport->dma_rx_desc is NULL:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004
pc : lpuart_copy_rx_to_tty+0xcc/0x5bc
lr : lpuart_timer_func+0x1c/0x2c
Call trace:
lpuart_copy_rx_to_tty
lpuart_timer_func
call_timer_fn
__run_timers.part.0
run_timer_softirq
__do_softirq
__irq_exit_rcu
irq_exit
handle_domain_irq
gic_handle_irq
call_on_irq_stack
do_interrupt_handler
...
To fix this fold del_timer_sync() into lpuart_dma_rx_free() after
dmaengine_terminate_sync() to make sure timer will not be re-started in
lpuart_copy_rx_to_tty() <= lpuart_dma_rx_complete(). |
| Time-of-check time-of-use race condition for some Intel Ethernet Adapter Complete Driver Pack software before version 1.5.1.0 within Ring 3: User Applications may allow a denial of service. Unprivileged software adversary with an authenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires active user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (none) impacts. |
| In the Linux kernel, the following vulnerability has been resolved:
tee: amdtee: fix race condition in amdtee_open_session
There is a potential race condition in amdtee_open_session that may
lead to use-after-free. For instance, in amdtee_open_session() after
sess->sess_mask is set, and before setting:
sess->session_info[i] = session_info;
if amdtee_close_session() closes this same session, then 'sess' data
structure will be released, causing kernel panic when 'sess' is
accessed within amdtee_open_session().
The solution is to set the bit sess->sess_mask as the last step in
amdtee_open_session(). |