| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
perf/dwc_pcie: fix duplicate pci_dev devices
During platform_device_register, wrongly using struct device
pci_dev as platform_data caused a kmemdup copy of pci_dev. Worse
still, accessing the duplicated device leads to list corruption as its
mutex content (e.g., list, magic) remains the same as the original. |
| There is a type confusion vulnerability relating to X.400 address processing
inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but
the public structure definition for GENERAL_NAME incorrectly specified the type
of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by
the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an
ASN1_STRING.
When CRL checking is enabled (i.e. the application sets the
X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass
arbitrary pointers to a memcmp call, enabling them to read memory contents or
enact a denial of service. In most cases, the attack requires the attacker to
provide both the certificate chain and CRL, neither of which need to have a
valid signature. If the attacker only controls one of these inputs, the other
input must already contain an X.400 address as a CRL distribution point, which
is uncommon. As such, this vulnerability is most likely to only affect
applications which have implemented their own functionality for retrieving CRLs
over a network. |
| An incorrect type conversion vulnerability exists in the DVPSSoftcopyVOI_PList::createFromImage functionality of OFFIS DCMTK 3.6.8. A specially crafted malformed file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| A potentially exploitable type confusion could be triggered when looking up a property name on an object being used as the `with` environment. This vulnerability affects Firefox < 130, Firefox ESR < 128.2, Firefox ESR < 115.15, Thunderbird < 128.2, and Thunderbird < 115.15. |
| Multiple invalid pointer dereference vulnerabilities exist in the OpenPLC Runtime EtherNet/IP parser functionality of OpenPLC_v3 16bf8bac1a36d95b73e7b8722d0edb8b9c5bb56a. A specially crafted EtherNet/IP request can lead to denial of service. An attacker can send a series of EtherNet/IP requests to trigger these vulnerabilities.This instance of the vulnerability occurs within the `Protected_Logical_Write_Reply` function |
| Multiple invalid pointer dereference vulnerabilities exist in the OpenPLC Runtime EtherNet/IP parser functionality of OpenPLC_v3 16bf8bac1a36d95b73e7b8722d0edb8b9c5bb56a. A specially crafted EtherNet/IP request can lead to denial of service. An attacker can send a series of EtherNet/IP requests to trigger these vulnerabilities.This instance of the vulnerability occurs within the `Protected_Logical_Read_Reply` function |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: probes: Fix uprobes for big-endian kernels
The arm64 uprobes code is broken for big-endian kernels as it doesn't
convert the in-memory instruction encoding (which is always
little-endian) into the kernel's native endianness before analyzing and
simulating instructions. This may result in a few distinct problems:
* The kernel may may erroneously reject probing an instruction which can
safely be probed.
* The kernel may erroneously erroneously permit stepping an
instruction out-of-line when that instruction cannot be stepped
out-of-line safely.
* The kernel may erroneously simulate instruction incorrectly dur to
interpretting the byte-swapped encoding.
The endianness mismatch isn't caught by the compiler or sparse because:
* The arch_uprobe::{insn,ixol} fields are encoded as arrays of u8, so
the compiler and sparse have no idea these contain a little-endian
32-bit value. The core uprobes code populates these with a memcpy()
which similarly does not handle endianness.
* While the uprobe_opcode_t type is an alias for __le32, both
arch_uprobe_analyze_insn() and arch_uprobe_skip_sstep() cast from u8[]
to the similarly-named probe_opcode_t, which is an alias for u32.
Hence there is no endianness conversion warning.
Fix this by changing the arch_uprobe::{insn,ixol} fields to __le32 and
adding the appropriate __le32_to_cpu() conversions prior to consuming
the instruction encoding. The core uprobes copies these fields as opaque
ranges of bytes, and so is unaffected by this change.
At the same time, remove MAX_UINSN_BYTES and consistently use
AARCH64_INSN_SIZE for clarity.
Tested with the following:
| #include <stdio.h>
| #include <stdbool.h>
|
| #define noinline __attribute__((noinline))
|
| static noinline void *adrp_self(void)
| {
| void *addr;
|
| asm volatile(
| " adrp %x0, adrp_self\n"
| " add %x0, %x0, :lo12:adrp_self\n"
| : "=r" (addr));
| }
|
|
| int main(int argc, char *argv)
| {
| void *ptr = adrp_self();
| bool equal = (ptr == adrp_self);
|
| printf("adrp_self => %p\n"
| "adrp_self() => %p\n"
| "%s\n",
| adrp_self, ptr, equal ? "EQUAL" : "NOT EQUAL");
|
| return 0;
| }
.... where the adrp_self() function was compiled to:
| 00000000004007e0 <adrp_self>:
| 4007e0: 90000000 adrp x0, 400000 <__ehdr_start>
| 4007e4: 911f8000 add x0, x0, #0x7e0
| 4007e8: d65f03c0 ret
Before this patch, the ADRP is not recognized, and is assumed to be
steppable, resulting in corruption of the result:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0xffffffffff7e0
| NOT EQUAL
After this patch, the ADRP is correctly recognized and simulated:
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL
| #
| # echo 'p /root/adrp-self:0x007e0' > /sys/kernel/tracing/uprobe_events
| # echo 1 > /sys/kernel/tracing/events/uprobes/enable
| # ./adrp-self
| adrp_self => 0x4007e0
| adrp_self() => 0x4007e0
| EQUAL |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix kernel bug due to missing clearing of buffer delay flag
Syzbot reported that after nilfs2 reads a corrupted file system image
and degrades to read-only, the BUG_ON check for the buffer delay flag
in submit_bh_wbc() may fail, causing a kernel bug.
This is because the buffer delay flag is not cleared when clearing the
buffer state flags to discard a page/folio or a buffer head. So, fix
this.
This became necessary when the use of nilfs2's own page clear routine
was expanded. This state inconsistency does not occur if the buffer
is written normally by log writing. |
| The package nanoid from 3.0.0 and before 3.1.31 are vulnerable to Information Exposure via the valueOf() function which allows to reproduce the last id generated. |
| A flaw was found in python. In algorithms with quadratic time complexity using non-binary bases, when using int("text"), a system could take 50ms to parse an int string with 100,000 digits and 5s for 1,000,000 digits (float, decimal, int.from_bytes(), and int() for binary bases 2, 4, 8, 16, and 32 are not affected). The highest threat from this vulnerability is to system availability. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: caam - Fix the pointer passed to caam_qi_shutdown()
The type of the last parameter given to devm_add_action_or_reset() is
"struct caam_drv_private *", but in caam_qi_shutdown(), it is casted to
"struct device *".
Pass the correct parameter to devm_add_action_or_reset() so that the
resources are released as expected. |
| In the Linux kernel, the following vulnerability has been resolved:
acpi: nfit: fix narrowing conversion in acpi_nfit_ctl
Syzkaller has reported a warning in to_nfit_bus_uuid(): "only secondary
bus families can be translated". This warning is emited if the argument
is equal to NVDIMM_BUS_FAMILY_NFIT == 0. Function acpi_nfit_ctl() first
verifies that a user-provided value call_pkg->nd_family of type u64 is
not equal to 0. Then the value is converted to int, and only after that
is compared to NVDIMM_BUS_FAMILY_MAX. This can lead to passing an invalid
argument to acpi_nfit_ctl(), if call_pkg->nd_family is non-zero, while
the lower 32 bits are zero.
Furthermore, it is best to return EINVAL immediately upon seeing the
invalid user input. The WARNING is insufficient to prevent further
undefined behavior based on other invalid user input.
All checks of the input value should be applied to the original variable
call_pkg->nd_family.
[iweiny: update commit message] |
| A vulnerability was found in NagVis up to 1.9.33 and classified as problematic. This issue affects the function checkAuthCookie of the file share/server/core/classes/CoreLogonMultisite.php. The manipulation of the argument hash leads to incorrect type conversion. The attack may be initiated remotely. The complexity of an attack is rather high. The exploitation is known to be difficult. Upgrading to version 1.9.34 is able to address this issue. The identifier of the patch is 7574fd8a2903282c2e0d1feef5c4876763db21d5. It is recommended to upgrade the affected component. The identifier VDB-213557 was assigned to this vulnerability. |
| A type confusion vulnerability exists in the handling of the string addition (+) operation within the QuickJS engine.
* The code first checks if the left-hand operand is a string.
* It then attempts to convert the right-hand operand to a primitive value using JS_ToPrimitiveFree. This conversion can trigger a callback (e.g., toString or valueOf).
* During this callback, an attacker can modify the type of the left-hand operand in memory, changing it from a string to a different type (e.g., an object or an array).
* The code then proceeds to call JS_ConcatStringInPlace, which still treats the modified left-hand value as a string.
This mismatch between the assumed type (string) and the actual type allows an attacker to control the data structure being processed by the concatenation logic, resulting in a type confusion condition. This can lead to out-of-bounds memory access, potentially resulting in memory corruption and arbitrary code execution in the context of the QuickJS runtime. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "readahead: properly shorten readahead when falling back to do_page_cache_ra()"
This reverts commit 7c877586da3178974a8a94577b6045a48377ff25.
Anders and Philippe have reported that recent kernels occasionally hang
when used with NFS in readahead code. The problem has been bisected to
7c877586da3 ("readahead: properly shorten readahead when falling back to
do_page_cache_ra()"). The cause of the problem is that ra->size can be
shrunk by read_pages() call and subsequently we end up calling
do_page_cache_ra() with negative (read huge positive) number of pages.
Let's revert 7c877586da3 for now until we can find a proper way how the
logic in read_pages() and page_cache_ra_order() can coexist. This can
lead to reduced readahead throughput due to readahead window confusion but
that's better than outright hangs. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fec: don't save PTP state if PTP is unsupported
Some platforms (such as i.MX25 and i.MX27) do not support PTP, so on
these platforms fec_ptp_init() is not called and the related members
in fep are not initialized. However, fec_ptp_save_state() is called
unconditionally, which causes the kernel to panic. Therefore, add a
condition so that fec_ptp_save_state() is not called if PTP is not
supported. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix wrong reg type conversion in release_reference()
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem. |
| Mattermost versions 10.2.x <= 10.2.0, 9.11.x <= 9.11.5, 10.0.x <= 10.0.3, 10.1.x <= 10.1.3 fail to properly validate the style of proto supplied to an action's style in post.props.attachments, which allows an attacker to crash the frontend via crafted malicious input. |
| Mattermost Mobile versions <= 2.22.0 fail to properly validate the style of proto supplied to an action's style in post.props.attachments, which allows an attacker to crash the mobile via crafted malicious input. |
| A flaw was found in Keylime, a remote attestation solution, where strict type checking introduced in version 7.12.0 prevents the registrar from reading database entries created by previous versions, for example, 7.11.0. Specifically, older versions store agent registration data as bytes, whereas the updated registrar expects str. This issue leads to an exception when processing agent registration requests, causing the agent to fail. |