| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
writeback: avoid use-after-free after removing device
When a disk is removed, bdi_unregister gets called to stop further
writeback and wait for associated delayed work to complete. However,
wb_inode_writeback_end() may schedule bandwidth estimation dwork after
this has completed, which can result in the timer attempting to access the
just freed bdi_writeback.
Fix this by checking if the bdi_writeback is alive, similar to when
scheduling writeback work.
Since this requires wb->work_lock, and wb_inode_writeback_end() may get
called from interrupt, switch wb->work_lock to an irqsafe lock. |
| Use after free in V8 in Google Chrome prior to 141.0.7390.54 allowed a remote attacker to potentially perform out of bounds memory access via a crafted HTML page. (Chromium security severity: Low) |
| Object lifecycle issue in Media in Google Chrome prior to 142.0.7444.59 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: High) |
| Use after free in PageInfo in Google Chrome prior to 142.0.7444.59 allowed a remote attacker who convinced a user to engage in specific UI gestures to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium) |
| Use after free in Ozone in Google Chrome on Linux and ChromeOS prior to 142.0.7444.59 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: Medium) |
| A use-after-free vulnerability was found in libxml2. This issue occurs when parsing XPath elements under certain circumstances when the XML schematron has the <sch:name path="..."/> schema elements. This flaw allows a malicious actor to craft a malicious XML document used as input for libxml, resulting in the program's crash using libxml or other possible undefined behaviors. |
| Memory safety bugs present in Firefox 144 and Thunderbird 144. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 145. |
| Use after free in Storage in Google Chrome prior to 141.0.7390.65 allowed a remote attacker to execute arbitrary code via a crafted video file. (Chromium security severity: High) |
| Inappropriate implementation in V8 in Google Chrome prior to 142.0.7444.137 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| Use after free in Safe Browsing in Google Chrome prior to 141.0.7390.107 allowed a remote attacker who had compromised the renderer process to potentially perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High) |
| Use-after-free in the WebRTC: Audio/Video component. This vulnerability affects Firefox < 145 and Firefox ESR < 140.5. |
| Use-after-free in the Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, and Firefox ESR < 115.30. |
| A NULL pointer dereference vulnerability was found in libxml2 when processing XPath XML expressions. This flaw allows an attacker to craft a malicious XML input to libxml2, leading to a denial of service. |
| A use-after-free vulnerability exists in the sopen_FAMOS_read functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .famos file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| NTLMSSP dissector crash in Wireshark 4.2.0 to 4.0.6 and 4.0.0 to 4.0.16 allows denial of service via packet injection or crafted capture file |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmode should keep reference to parent
The altmode device release refers to its parent device, but without keeping
a reference to it.
When registering the altmode, get a reference to the parent and put it in
the release function.
Before this fix, when using CONFIG_DEBUG_KOBJECT_RELEASE, we see issues
like this:
[ 43.572860] kobject: 'port0.0' (ffff8880057ba008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 43.573532] kobject: 'port0.1' (ffff8880057bd008): kobject_release, parent 0000000000000000 (delayed 1000)
[ 43.574407] kobject: 'port0' (ffff8880057b9008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 43.575059] kobject: 'port1.0' (ffff8880057ca008): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.575908] kobject: 'port1.1' (ffff8880057c9008): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.576908] kobject: 'typec' (ffff8880062dbc00): kobject_release, parent 0000000000000000 (delayed 4000)
[ 43.577769] kobject: 'port1' (ffff8880057bf008): kobject_release, parent 0000000000000000 (delayed 3000)
[ 46.612867] ==================================================================
[ 46.613402] BUG: KASAN: slab-use-after-free in typec_altmode_release+0x38/0x129
[ 46.614003] Read of size 8 at addr ffff8880057b9118 by task kworker/2:1/48
[ 46.614538]
[ 46.614668] CPU: 2 UID: 0 PID: 48 Comm: kworker/2:1 Not tainted 6.12.0-rc1-00138-gedbae730ad31 #535
[ 46.615391] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
[ 46.616042] Workqueue: events kobject_delayed_cleanup
[ 46.616446] Call Trace:
[ 46.616648] <TASK>
[ 46.616820] dump_stack_lvl+0x5b/0x7c
[ 46.617112] ? typec_altmode_release+0x38/0x129
[ 46.617470] print_report+0x14c/0x49e
[ 46.617769] ? rcu_read_unlock_sched+0x56/0x69
[ 46.618117] ? __virt_addr_valid+0x19a/0x1ab
[ 46.618456] ? kmem_cache_debug_flags+0xc/0x1d
[ 46.618807] ? typec_altmode_release+0x38/0x129
[ 46.619161] kasan_report+0x8d/0xb4
[ 46.619447] ? typec_altmode_release+0x38/0x129
[ 46.619809] ? process_scheduled_works+0x3cb/0x85f
[ 46.620185] typec_altmode_release+0x38/0x129
[ 46.620537] ? process_scheduled_works+0x3cb/0x85f
[ 46.620907] device_release+0xaf/0xf2
[ 46.621206] kobject_delayed_cleanup+0x13b/0x17a
[ 46.621584] process_scheduled_works+0x4f6/0x85f
[ 46.621955] ? __pfx_process_scheduled_works+0x10/0x10
[ 46.622353] ? hlock_class+0x31/0x9a
[ 46.622647] ? lock_acquired+0x361/0x3c3
[ 46.622956] ? move_linked_works+0x46/0x7d
[ 46.623277] worker_thread+0x1ce/0x291
[ 46.623582] ? __kthread_parkme+0xc8/0xdf
[ 46.623900] ? __pfx_worker_thread+0x10/0x10
[ 46.624236] kthread+0x17e/0x190
[ 46.624501] ? kthread+0xfb/0x190
[ 46.624756] ? __pfx_kthread+0x10/0x10
[ 46.625015] ret_from_fork+0x20/0x40
[ 46.625268] ? __pfx_kthread+0x10/0x10
[ 46.625532] ret_from_fork_asm+0x1a/0x30
[ 46.625805] </TASK>
[ 46.625953]
[ 46.626056] Allocated by task 678:
[ 46.626287] kasan_save_stack+0x24/0x44
[ 46.626555] kasan_save_track+0x14/0x2d
[ 46.626811] __kasan_kmalloc+0x3f/0x4d
[ 46.627049] __kmalloc_noprof+0x1bf/0x1f0
[ 46.627362] typec_register_port+0x23/0x491
[ 46.627698] cros_typec_probe+0x634/0xbb6
[ 46.628026] platform_probe+0x47/0x8c
[ 46.628311] really_probe+0x20a/0x47d
[ 46.628605] device_driver_attach+0x39/0x72
[ 46.628940] bind_store+0x87/0xd7
[ 46.629213] kernfs_fop_write_iter+0x1aa/0x218
[ 46.629574] vfs_write+0x1d6/0x29b
[ 46.629856] ksys_write+0xcd/0x13b
[ 46.630128] do_syscall_64+0xd4/0x139
[ 46.630420] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 46.630820]
[ 46.630946] Freed by task 48:
[ 46.631182] kasan_save_stack+0x24/0x44
[ 46.631493] kasan_save_track+0x14/0x2d
[ 46.631799] kasan_save_free_info+0x3f/0x4d
[ 46.632144] __kasan_slab_free+0x37/0x45
[ 46.632474]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: bcm: Clear bo->bcm_proc_read after remove_proc_entry().
syzbot reported a warning in bcm_release(). [0]
The blamed change fixed another warning that is triggered when
connect() is issued again for a socket whose connect()ed device has
been unregistered.
However, if the socket is just close()d without the 2nd connect(), the
remaining bo->bcm_proc_read triggers unnecessary remove_proc_entry()
in bcm_release().
Let's clear bo->bcm_proc_read after remove_proc_entry() in bcm_notify().
[0]
name '4986'
WARNING: CPU: 0 PID: 5234 at fs/proc/generic.c:711 remove_proc_entry+0x2e7/0x5d0 fs/proc/generic.c:711
Modules linked in:
CPU: 0 UID: 0 PID: 5234 Comm: syz-executor606 Not tainted 6.11.0-rc5-syzkaller-00178-g5517ae241919 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024
RIP: 0010:remove_proc_entry+0x2e7/0x5d0 fs/proc/generic.c:711
Code: ff eb 05 e8 cb 1e 5e ff 48 8b 5c 24 10 48 c7 c7 e0 f7 aa 8e e8 2a 38 8e 09 90 48 c7 c7 60 3a 1b 8c 48 89 de e8 da 42 20 ff 90 <0f> 0b 90 90 48 8b 44 24 18 48 c7 44 24 40 0e 36 e0 45 49 c7 04 07
RSP: 0018:ffffc9000345fa20 EFLAGS: 00010246
RAX: 2a2d0aee2eb64600 RBX: ffff888032f1f548 RCX: ffff888029431e00
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc9000345fb08 R08: ffffffff8155b2f2 R09: 1ffff1101710519a
R10: dffffc0000000000 R11: ffffed101710519b R12: ffff888011d38640
R13: 0000000000000004 R14: 0000000000000000 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ffff8880b8800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fcfb52722f0 CR3: 000000000e734000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
bcm_release+0x250/0x880 net/can/bcm.c:1578
__sock_release net/socket.c:659 [inline]
sock_close+0xbc/0x240 net/socket.c:1421
__fput+0x24a/0x8a0 fs/file_table.c:422
task_work_run+0x24f/0x310 kernel/task_work.c:228
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0xa2f/0x27f0 kernel/exit.c:882
do_group_exit+0x207/0x2c0 kernel/exit.c:1031
__do_sys_exit_group kernel/exit.c:1042 [inline]
__se_sys_exit_group kernel/exit.c:1040 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1040
x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcfb51ee969
Code: Unable to access opcode bytes at 0x7fcfb51ee93f.
RSP: 002b:00007ffce0109ca8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007fcfb51ee969
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 00007fcfb526f3b0 R08: ffffffffffffffb8 R09: 0000555500000000
R10: 0000555500000000 R11: 0000000000000246 R12: 00007fcfb526f3b0
R13: 0000000000000000 R14: 00007fcfb5271ee0 R15: 00007fcfb51bf160
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Disassociate vcpus from redistributor region on teardown
When tearing down a redistributor region, make sure we don't have
any dangling pointer to that region stored in a vcpu. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: Clear napi->skb before dev_kfree_skb_any()
gve_rx_free_skb incorrectly leaves napi->skb referencing an skb after it
is freed with dev_kfree_skb_any(). This can result in a subsequent call
to napi_get_frags returning a dangling pointer.
Fix this by clearing napi->skb before the skb is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/shmem-helper: Fix BUG_ON() on mmap(PROT_WRITE, MAP_PRIVATE)
Lack of check for copy-on-write (COW) mapping in drm_gem_shmem_mmap
allows users to call mmap with PROT_WRITE and MAP_PRIVATE flag
causing a kernel panic due to BUG_ON in vmf_insert_pfn_prot:
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
Return -EINVAL early if COW mapping is detected.
This bug affects all drm drivers using default shmem helpers.
It can be reproduced by this simple example:
void *ptr = mmap(0, size, PROT_WRITE, MAP_PRIVATE, fd, mmap_offset);
ptr[0] = 0; |