In the Linux kernel, the following vulnerability has been resolved:

serial: amba-pl011: avoid SBSA UART accessing DMACR register

Chapter "B Generic UART" in "ARM Server Base System Architecture" [1]
documentation describes a generic UART interface. Such generic UART
does not support DMA. In current code, sbsa_uart_pops and
amba_pl011_pops share the same stop_rx operation, which will invoke
pl011_dma_rx_stop, leading to an access of the DMACR register. This
commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the
access to DMACR register for SBSA UARTs which does not support DMA.

When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux
SBSA PL011 driver will access PL011 DMACR register in some functions.
For most real SBSA Pl011 hardware implementations, the DMACR write
behaviour will be ignored. So these DMACR operations will not cause
obvious problems. But for some virtual SBSA PL011 hardware, like Xen
virtual SBSA PL011 (vpl011) device, the behaviour might be different.
Xen vpl011 emulation will inject a data abort to guest, when guest is
accessing an unimplemented UART register. As Xen VPL011 is SBSA
compatible, it will not implement DMACR register. So when Linux SBSA
PL011 driver access DMACR register, it will get an unhandled data abort
fault and the application will get a segmentation fault:
Unhandled fault at 0xffffffc00944d048
Mem abort info:
ESR = 0x96000000
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x00: ttbr address size fault
Data abort info:
ISV = 0, ISS = 0x00000000
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000
[ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13
Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP
...
Call trace:
pl011_stop_rx+0x70/0x80
tty_port_shutdown+0x7c/0xb4
tty_port_close+0x60/0xcc
uart_close+0x34/0x8c
tty_release+0x144/0x4c0
__fput+0x78/0x220
____fput+0x1c/0x30
task_work_run+0x88/0xc0
do_notify_resume+0x8d0/0x123c
el0_svc+0xa8/0xc0
el0t_64_sync_handler+0xa4/0x130
el0t_64_sync+0x1a0/0x1a4
Code: b9000083 b901f001 794038a0 8b000042 (b9000041)
---[ end trace 83dd93df15c3216f ]---
note: bootlogd[132] exited with preempt_count 1
/etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon

This has been discussed in the Xen community, and we think it should fix
this in Linux. See [2] for more information.

[1] https://developer.arm.com/documentation/den0094/c/?lang=en
[2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Mon, 08 Dec 2025 02:00:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: serial: amba-pl011: avoid SBSA UART accessing DMACR register Chapter "B Generic UART" in "ARM Server Base System Architecture" [1] documentation describes a generic UART interface. Such generic UART does not support DMA. In current code, sbsa_uart_pops and amba_pl011_pops share the same stop_rx operation, which will invoke pl011_dma_rx_stop, leading to an access of the DMACR register. This commit adds a using_rx_dma check in pl011_dma_rx_stop to avoid the access to DMACR register for SBSA UARTs which does not support DMA. When the kernel enables DMA engine with "CONFIG_DMA_ENGINE=y", Linux SBSA PL011 driver will access PL011 DMACR register in some functions. For most real SBSA Pl011 hardware implementations, the DMACR write behaviour will be ignored. So these DMACR operations will not cause obvious problems. But for some virtual SBSA PL011 hardware, like Xen virtual SBSA PL011 (vpl011) device, the behaviour might be different. Xen vpl011 emulation will inject a data abort to guest, when guest is accessing an unimplemented UART register. As Xen VPL011 is SBSA compatible, it will not implement DMACR register. So when Linux SBSA PL011 driver access DMACR register, it will get an unhandled data abort fault and the application will get a segmentation fault: Unhandled fault at 0xffffffc00944d048 Mem abort info: ESR = 0x96000000 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x00: ttbr address size fault Data abort info: ISV = 0, ISS = 0x00000000 CM = 0, WnR = 0 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000020e2e000 [ffffffc00944d048] pgd=100000003ffff803, p4d=100000003ffff803, pud=100000003ffff803, pmd=100000003fffa803, pte=006800009c090f13 Internal error: ttbr address size fault: 96000000 [#1] PREEMPT SMP ... Call trace: pl011_stop_rx+0x70/0x80 tty_port_shutdown+0x7c/0xb4 tty_port_close+0x60/0xcc uart_close+0x34/0x8c tty_release+0x144/0x4c0 __fput+0x78/0x220 ____fput+0x1c/0x30 task_work_run+0x88/0xc0 do_notify_resume+0x8d0/0x123c el0_svc+0xa8/0xc0 el0t_64_sync_handler+0xa4/0x130 el0t_64_sync+0x1a0/0x1a4 Code: b9000083 b901f001 794038a0 8b000042 (b9000041) ---[ end trace 83dd93df15c3216f ]--- note: bootlogd[132] exited with preempt_count 1 /etc/rcS.d/S07bootlogd: line 47: 132 Segmentation fault start-stop-daemon This has been discussed in the Xen community, and we think it should fix this in Linux. See [2] for more information. [1] https://developer.arm.com/documentation/den0094/c/?lang=en [2] https://lists.xenproject.org/archives/html/xen-devel/2022-11/msg00543.html
Title serial: amba-pl011: avoid SBSA UART accessing DMACR register
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-12-08T01:16:39.642Z

Reserved: 2025-12-08T01:14:55.190Z

Link: CVE-2022-50625

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Received

Published: 2025-12-08T02:15:48.510

Modified: 2025-12-08T02:15:48.510

Link: CVE-2022-50625

cve-icon Redhat

No data.

cve-icon OpenCVE Enrichment

No data.

Weaknesses

No weakness.