In the Linux kernel, the following vulnerability has been resolved:

fortify: Fix __compiletime_strlen() under UBSAN_BOUNDS_LOCAL

With CONFIG_FORTIFY=y and CONFIG_UBSAN_LOCAL_BOUNDS=y enabled, we observe
a runtime panic while running Android's Compatibility Test Suite's (CTS)
android.hardware.input.cts.tests. This is stemming from a strlen()
call in hidinput_allocate().

__compiletime_strlen() is implemented in terms of __builtin_object_size(),
then does an array access to check for NUL-termination. A quirk of
__builtin_object_size() is that for strings whose values are runtime
dependent, __builtin_object_size(str, 1 or 0) returns the maximum size
of possible values when those sizes are determinable at compile time.
Example:

static const char *v = "FOO BAR";
static const char *y = "FOO BA";
unsigned long x (int z) {
// Returns 8, which is:
// max(__builtin_object_size(v, 1), __builtin_object_size(y, 1))
return __builtin_object_size(z ? v : y, 1);
}

So when FORTIFY_SOURCE is enabled, the current implementation of
__compiletime_strlen() will try to access beyond the end of y at runtime
using the size of v. Mixed with UBSAN_LOCAL_BOUNDS we get a fault.

hidinput_allocate() has a local C string whose value is control flow
dependent on a switch statement, so __builtin_object_size(str, 1)
evaluates to the maximum string length, making all other cases fault on
the last character check. hidinput_allocate() could be cleaned up to
avoid runtime calls to strlen() since the local variable can only have
literal values, so there's no benefit to trying to fortify the strlen
call site there.

Perform a __builtin_constant_p() check against index 0 earlier in the
macro to filter out the control-flow-dependant case. Add a KUnit test
for checking the expected behavioral characteristics of FORTIFY_SOURCE
internals.
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Wed, 24 Dec 2025 13:15:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: fortify: Fix __compiletime_strlen() under UBSAN_BOUNDS_LOCAL With CONFIG_FORTIFY=y and CONFIG_UBSAN_LOCAL_BOUNDS=y enabled, we observe a runtime panic while running Android's Compatibility Test Suite's (CTS) android.hardware.input.cts.tests. This is stemming from a strlen() call in hidinput_allocate(). __compiletime_strlen() is implemented in terms of __builtin_object_size(), then does an array access to check for NUL-termination. A quirk of __builtin_object_size() is that for strings whose values are runtime dependent, __builtin_object_size(str, 1 or 0) returns the maximum size of possible values when those sizes are determinable at compile time. Example: static const char *v = "FOO BAR"; static const char *y = "FOO BA"; unsigned long x (int z) { // Returns 8, which is: // max(__builtin_object_size(v, 1), __builtin_object_size(y, 1)) return __builtin_object_size(z ? v : y, 1); } So when FORTIFY_SOURCE is enabled, the current implementation of __compiletime_strlen() will try to access beyond the end of y at runtime using the size of v. Mixed with UBSAN_LOCAL_BOUNDS we get a fault. hidinput_allocate() has a local C string whose value is control flow dependent on a switch statement, so __builtin_object_size(str, 1) evaluates to the maximum string length, making all other cases fault on the last character check. hidinput_allocate() could be cleaned up to avoid runtime calls to strlen() since the local variable can only have literal values, so there's no benefit to trying to fortify the strlen call site there. Perform a __builtin_constant_p() check against index 0 earlier in the macro to filter out the control-flow-dependant case. Add a KUnit test for checking the expected behavioral characteristics of FORTIFY_SOURCE internals.
Title fortify: Fix __compiletime_strlen() under UBSAN_BOUNDS_LOCAL
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-12-24T13:06:07.182Z

Reserved: 2025-12-24T13:02:21.547Z

Link: CVE-2022-50778

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Received

Published: 2025-12-24T13:16:04.640

Modified: 2025-12-24T13:16:04.640

Link: CVE-2022-50778

cve-icon Redhat

No data.

cve-icon OpenCVE Enrichment

No data.

Weaknesses

No weakness.