In the Linux kernel, the following vulnerability has been resolved:

net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data

In case the non-paged data of a SKB carries protocol header and protocol
payload to be transmitted on a certain platform that the DMA AXI address
width is configured to 40-bit/48-bit, or the size of the non-paged data
is bigger than TSO_MAX_BUFF_SIZE on a certain platform that the DMA AXI
address width is configured to 32-bit, then this SKB requires at least
two DMA transmit descriptors to serve it.

For example, three descriptors are allocated to split one DMA buffer
mapped from one piece of non-paged data:
dma_desc[N + 0],
dma_desc[N + 1],
dma_desc[N + 2].
Then three elements of tx_q->tx_skbuff_dma[] will be allocated to hold
extra information to be reused in stmmac_tx_clean():
tx_q->tx_skbuff_dma[N + 0],
tx_q->tx_skbuff_dma[N + 1],
tx_q->tx_skbuff_dma[N + 2].
Now we focus on tx_q->tx_skbuff_dma[entry].buf, which is the DMA buffer
address returned by DMA mapping call. stmmac_tx_clean() will try to
unmap the DMA buffer _ONLY_IF_ tx_q->tx_skbuff_dma[entry].buf
is a valid buffer address.

The expected behavior that saves DMA buffer address of this non-paged
data to tx_q->tx_skbuff_dma[entry].buf is:
tx_q->tx_skbuff_dma[N + 0].buf = NULL;
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = dma_map_single();
Unfortunately, the current code misbehaves like this:
tx_q->tx_skbuff_dma[N + 0].buf = dma_map_single();
tx_q->tx_skbuff_dma[N + 1].buf = NULL;
tx_q->tx_skbuff_dma[N + 2].buf = NULL;

On the stmmac_tx_clean() side, when dma_desc[N + 0] is closed by the
DMA engine, tx_q->tx_skbuff_dma[N + 0].buf is a valid buffer address
obviously, then the DMA buffer will be unmapped immediately.
There may be a rare case that the DMA engine does not finish the
pending dma_desc[N + 1], dma_desc[N + 2] yet. Now things will go
horribly wrong, DMA is going to access a unmapped/unreferenced memory
region, corrupted data will be transmited or iommu fault will be
triggered :(

In contrast, the for-loop that maps SKB fragments behaves perfectly
as expected, and that is how the driver should do for both non-paged
data and paged frags actually.

This patch corrects DMA map/unmap sequences by fixing the array index
for tx_q->tx_skbuff_dma[entry].buf when assigning DMA buffer address.

Tested and verified on DWXGMAC CORE 3.20a
Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Wed, 01 Oct 2025 21:15:00 +0000

Type Values Removed Values Added
Metrics ssvc

{'options': {'Automatable': 'no', 'Exploitation': 'none', 'Technical Impact': 'partial'}, 'version': '2.0.3'}


Thu, 13 Feb 2025 00:45:00 +0000

Type Values Removed Values Added
Weaknesses CWE-125

Fri, 22 Nov 2024 18:15:00 +0000

Type Values Removed Values Added
First Time appeared Linux
Linux linux Kernel
Weaknesses NVD-CWE-noinfo
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.12:rc1:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.12:rc2:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.12:rc3:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.12:rc4:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.12:rc5:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel

Fri, 22 Nov 2024 14:00:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Moderate


Tue, 19 Nov 2024 17:30:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data In case the non-paged data of a SKB carries protocol header and protocol payload to be transmitted on a certain platform that the DMA AXI address width is configured to 40-bit/48-bit, or the size of the non-paged data is bigger than TSO_MAX_BUFF_SIZE on a certain platform that the DMA AXI address width is configured to 32-bit, then this SKB requires at least two DMA transmit descriptors to serve it. For example, three descriptors are allocated to split one DMA buffer mapped from one piece of non-paged data: dma_desc[N + 0], dma_desc[N + 1], dma_desc[N + 2]. Then three elements of tx_q->tx_skbuff_dma[] will be allocated to hold extra information to be reused in stmmac_tx_clean(): tx_q->tx_skbuff_dma[N + 0], tx_q->tx_skbuff_dma[N + 1], tx_q->tx_skbuff_dma[N + 2]. Now we focus on tx_q->tx_skbuff_dma[entry].buf, which is the DMA buffer address returned by DMA mapping call. stmmac_tx_clean() will try to unmap the DMA buffer _ONLY_IF_ tx_q->tx_skbuff_dma[entry].buf is a valid buffer address. The expected behavior that saves DMA buffer address of this non-paged data to tx_q->tx_skbuff_dma[entry].buf is: tx_q->tx_skbuff_dma[N + 0].buf = NULL; tx_q->tx_skbuff_dma[N + 1].buf = NULL; tx_q->tx_skbuff_dma[N + 2].buf = dma_map_single(); Unfortunately, the current code misbehaves like this: tx_q->tx_skbuff_dma[N + 0].buf = dma_map_single(); tx_q->tx_skbuff_dma[N + 1].buf = NULL; tx_q->tx_skbuff_dma[N + 2].buf = NULL; On the stmmac_tx_clean() side, when dma_desc[N + 0] is closed by the DMA engine, tx_q->tx_skbuff_dma[N + 0].buf is a valid buffer address obviously, then the DMA buffer will be unmapped immediately. There may be a rare case that the DMA engine does not finish the pending dma_desc[N + 1], dma_desc[N + 2] yet. Now things will go horribly wrong, DMA is going to access a unmapped/unreferenced memory region, corrupted data will be transmited or iommu fault will be triggered :( In contrast, the for-loop that maps SKB fragments behaves perfectly as expected, and that is how the driver should do for both non-paged data and paged frags actually. This patch corrects DMA map/unmap sequences by fixing the array index for tx_q->tx_skbuff_dma[entry].buf when assigning DMA buffer address. Tested and verified on DWXGMAC CORE 3.20a
Title net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data
References

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-10-01T20:17:17.845Z

Reserved: 2024-11-19T17:17:24.974Z

Link: CVE-2024-53058

cve-icon Vulnrichment

Updated: 2025-10-01T15:29:37.654Z

cve-icon NVD

Status : Modified

Published: 2024-11-19T18:15:25.767

Modified: 2025-10-01T21:16:23.277

Link: CVE-2024-53058

cve-icon Redhat

Severity : Moderate

Publid Date: 2024-11-19T00:00:00Z

Links: CVE-2024-53058 - Bugzilla

cve-icon OpenCVE Enrichment

No data.