ALSA: caiaq: Use snd_card_free_when_closed() at disconnection
The USB disconnect callback is supposed to be short and not too-long
waiting. OTOH, the current code uses snd_card_free() at
disconnection, but this waits for the close of all used fds, hence it
can take long. It eventually blocks the upper layer USB ioctls, which
may trigger a soft lockup.
An easy workaround is to replace snd_card_free() with
snd_card_free_when_closed(). This variant returns immediately while
the release of resources is done asynchronously by the card device
release at the last close.
This patch also splits the code to the disconnect and the free phases;
the former is called immediately at the USB disconnect callback while
the latter is called from the card destructor.
Metrics
Affected Vendors & Products
| Source | ID | Title |
|---|---|---|
Debian DLA |
DLA-4075-1 | linux security update |
Debian DLA |
DLA-4076-1 | linux-6.1 security update |
EUVD |
EUVD-2024-53179 | In the Linux kernel, the following vulnerability has been resolved: ALSA: caiaq: Use snd_card_free_when_closed() at disconnection The USB disconnect callback is supposed to be short and not too-long waiting. OTOH, the current code uses snd_card_free() at disconnection, but this waits for the close of all used fds, hence it can take long. It eventually blocks the upper layer USB ioctls, which may trigger a soft lockup. An easy workaround is to replace snd_card_free() with snd_card_free_when_closed(). This variant returns immediately while the release of resources is done asynchronously by the card device release at the last close. This patch also splits the code to the disconnect and the free phases; the former is called immediately at the USB disconnect callback while the latter is called from the card destructor. |
Ubuntu USN |
USN-7276-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7277-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7310-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7387-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7387-2 | Linux kernel (FIPS) vulnerabilities |
Ubuntu USN |
USN-7387-3 | Linux kernel (Real-time) vulnerabilities |
Ubuntu USN |
USN-7388-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7389-1 | Linux kernel (NVIDIA Tegra) vulnerabilities |
Ubuntu USN |
USN-7390-1 | Linux kernel (Xilinx ZynqMP) vulnerabilities |
Ubuntu USN |
USN-7391-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7392-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7392-2 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7392-3 | Linux kernel (AWS) vulnerabilities |
Ubuntu USN |
USN-7392-4 | Linux kernel (AWS FIPS) vulnerabilities |
Ubuntu USN |
USN-7393-1 | Linux kernel (FIPS) vulnerabilities |
Ubuntu USN |
USN-7401-1 | Linux kernel (AWS) vulnerabilities |
Ubuntu USN |
USN-7407-1 | Linux kernel (HWE) vulnerabilities |
Ubuntu USN |
USN-7413-1 | Linux kernel (IoT) vulnerabilities |
Ubuntu USN |
USN-7421-1 | Linux kernel (Azure) vulnerabilities |
Ubuntu USN |
USN-7449-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7449-2 | Linux kernel (HWE) vulnerabilities |
Ubuntu USN |
USN-7450-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7451-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7452-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7453-1 | Linux kernel (Real-time) vulnerabilities |
Ubuntu USN |
USN-7458-1 | Linux kernel (IBM) vulnerabilities |
Ubuntu USN |
USN-7459-1 | Linux kernel (Intel IoTG) vulnerabilities |
Ubuntu USN |
USN-7459-2 | Linux kernel (GCP) vulnerabilities |
Ubuntu USN |
USN-7463-1 | Linux kernel (IBM) vulnerabilities |
Ubuntu USN |
USN-7468-1 | Linux kernel (Azure, N-Series) vulnerabilities |
Ubuntu USN |
USN-7523-1 | Linux kernel (Raspberry Pi Real-time) vulnerabilities |
Ubuntu USN |
USN-7524-1 | Linux kernel (Raspberry Pi) vulnerabilities |
Ubuntu USN |
USN-7539-1 | Linux kernel (Raspberry Pi) vulnerabilities |
Ubuntu USN |
USN-7540-1 | Linux kernel (Raspberry Pi) vulnerabilities |
Solution
No solution given by the vendor.
Workaround
No workaround given by the vendor.
Mon, 03 Nov 2025 21:30:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| References |
|
Wed, 01 Oct 2025 21:15:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Metrics |
ssvc
|
Fri, 19 Sep 2025 16:30:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Weaknesses | CWE-667 | |
| CPEs | cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* |
Tue, 18 Feb 2025 02:30:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Weaknesses | CWE-459 |
Mon, 30 Dec 2024 01:30:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| References |
| |
| Metrics |
threat_severity
|
cvssV3_1
|
Fri, 27 Dec 2024 14:15:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Description | In the Linux kernel, the following vulnerability has been resolved: ALSA: caiaq: Use snd_card_free_when_closed() at disconnection The USB disconnect callback is supposed to be short and not too-long waiting. OTOH, the current code uses snd_card_free() at disconnection, but this waits for the close of all used fds, hence it can take long. It eventually blocks the upper layer USB ioctls, which may trigger a soft lockup. An easy workaround is to replace snd_card_free() with snd_card_free_when_closed(). This variant returns immediately while the release of resources is done asynchronously by the card device release at the last close. This patch also splits the code to the disconnect and the free phases; the former is called immediately at the USB disconnect callback while the latter is called from the card destructor. | |
| Title | ALSA: caiaq: Use snd_card_free_when_closed() at disconnection | |
| References |
|
|
Status: PUBLISHED
Assigner: Linux
Published:
Updated: 2025-11-03T20:49:10.948Z
Reserved: 2024-12-27T14:03:05.984Z
Link: CVE-2024-56531
Updated: 2025-10-01T15:40:08.192Z
Status : Modified
Published: 2024-12-27T14:15:32.503
Modified: 2025-11-03T21:17:51.383
Link: CVE-2024-56531
OpenCVE Enrichment
Updated: 2025-07-13T11:21:50Z
Debian DLA
EUVD
Ubuntu USN