s390/entry: Mark IRQ entries to fix stack depot warnings
The stack depot filters out everything outside of the top interrupt
context as an uninteresting or irrelevant part of the stack traces. This
helps with stack trace de-duplication, avoiding an explosion of saved
stack traces that share the same IRQ context code path but originate
from different randomly interrupted points, eventually exhausting the
stack depot.
Filtering uses in_irqentry_text() to identify functions within the
.irqentry.text and .softirqentry.text sections, which then become the
last stack trace entries being saved.
While __do_softirq() is placed into the .softirqentry.text section by
common code, populating .irqentry.text is architecture-specific.
Currently, the .irqentry.text section on s390 is empty, which prevents
stack depot filtering and de-duplication and could result in warnings
like:
Stack depot reached limit capacity
WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8
with PREEMPT and KASAN enabled.
Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into
the .irqentry.text section and updating the kprobes blacklist to include
the .irqentry.text section.
This is done only for asynchronous interrupts and explicitly not for
program checks, which are synchronous and where the context beyond the
program check is important to preserve. Despite machine checks being
somewhat in between, they are extremely rare, and preserving context
when possible is also of value.
SVCs and Restart Interrupts are not relevant, one being always at the
boundary to user space and the other being a one-time thing.
IRQ entries filtering is also optionally used in ftrace function graph,
where the same logic applies.
Metrics
Affected Vendors & Products
| Source | ID | Title |
|---|---|---|
Debian DLA |
DLA-4076-1 | linux-6.1 security update |
EUVD |
EUVD-2024-53768 | In the Linux kernel, the following vulnerability has been resolved: s390/entry: Mark IRQ entries to fix stack depot warnings The stack depot filters out everything outside of the top interrupt context as an uninteresting or irrelevant part of the stack traces. This helps with stack trace de-duplication, avoiding an explosion of saved stack traces that share the same IRQ context code path but originate from different randomly interrupted points, eventually exhausting the stack depot. Filtering uses in_irqentry_text() to identify functions within the .irqentry.text and .softirqentry.text sections, which then become the last stack trace entries being saved. While __do_softirq() is placed into the .softirqentry.text section by common code, populating .irqentry.text is architecture-specific. Currently, the .irqentry.text section on s390 is empty, which prevents stack depot filtering and de-duplication and could result in warnings like: Stack depot reached limit capacity WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8 with PREEMPT and KASAN enabled. Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into the .irqentry.text section and updating the kprobes blacklist to include the .irqentry.text section. This is done only for asynchronous interrupts and explicitly not for program checks, which are synchronous and where the context beyond the program check is important to preserve. Despite machine checks being somewhat in between, they are extremely rare, and preserving context when possible is also of value. SVCs and Restart Interrupts are not relevant, one being always at the boundary to user space and the other being a one-time thing. IRQ entries filtering is also optionally used in ftrace function graph, where the same logic applies. |
Ubuntu USN |
USN-7379-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7379-2 | Linux kernel (Raspberry Pi) vulnerabilities |
Ubuntu USN |
USN-7380-1 | Linux kernel (Low Latency) vulnerabilities |
Ubuntu USN |
USN-7381-1 | Linux kernel (Low Latency) vulnerabilities |
Ubuntu USN |
USN-7382-1 | Linux kernel (OEM) vulnerabilities |
Ubuntu USN |
USN-7387-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7387-2 | Linux kernel (FIPS) vulnerabilities |
Ubuntu USN |
USN-7387-3 | Linux kernel (Real-time) vulnerabilities |
Ubuntu USN |
USN-7388-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7389-1 | Linux kernel (NVIDIA Tegra) vulnerabilities |
Ubuntu USN |
USN-7390-1 | Linux kernel (Xilinx ZynqMP) vulnerabilities |
Ubuntu USN |
USN-7407-1 | Linux kernel (HWE) vulnerabilities |
Ubuntu USN |
USN-7421-1 | Linux kernel (Azure) vulnerabilities |
Ubuntu USN |
USN-7449-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7449-2 | Linux kernel (HWE) vulnerabilities |
Ubuntu USN |
USN-7450-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7451-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7452-1 | Linux kernel vulnerabilities |
Ubuntu USN |
USN-7453-1 | Linux kernel (Real-time) vulnerabilities |
Ubuntu USN |
USN-7458-1 | Linux kernel (IBM) vulnerabilities |
Ubuntu USN |
USN-7459-1 | Linux kernel (Intel IoTG) vulnerabilities |
Ubuntu USN |
USN-7459-2 | Linux kernel (GCP) vulnerabilities |
Ubuntu USN |
USN-7468-1 | Linux kernel (Azure, N-Series) vulnerabilities |
Ubuntu USN |
USN-7523-1 | Linux kernel (Raspberry Pi Real-time) vulnerabilities |
Ubuntu USN |
USN-7524-1 | Linux kernel (Raspberry Pi) vulnerabilities |
Solution
No solution given by the vendor.
Workaround
No workaround given by the vendor.
Mon, 03 Nov 2025 21:30:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| References |
|
Wed, 24 Sep 2025 19:00:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Weaknesses | CWE-668 | |
| CPEs | cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | |
| Metrics |
cvssV3_1
|
cvssV3_1
|
Thu, 13 Feb 2025 01:00:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Weaknesses | CWE-770 | |
| Metrics |
cvssV3_1
|
cvssV3_1
|
Tue, 14 Jan 2025 08:45:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| References |
| |
| Metrics |
threat_severity
|
cvssV3_1
|
Sat, 11 Jan 2025 14:15:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Description | In the Linux kernel, the following vulnerability has been resolved: s390/entry: Mark IRQ entries to fix stack depot warnings The stack depot filters out everything outside of the top interrupt context as an uninteresting or irrelevant part of the stack traces. This helps with stack trace de-duplication, avoiding an explosion of saved stack traces that share the same IRQ context code path but originate from different randomly interrupted points, eventually exhausting the stack depot. Filtering uses in_irqentry_text() to identify functions within the .irqentry.text and .softirqentry.text sections, which then become the last stack trace entries being saved. While __do_softirq() is placed into the .softirqentry.text section by common code, populating .irqentry.text is architecture-specific. Currently, the .irqentry.text section on s390 is empty, which prevents stack depot filtering and de-duplication and could result in warnings like: Stack depot reached limit capacity WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8 with PREEMPT and KASAN enabled. Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into the .irqentry.text section and updating the kprobes blacklist to include the .irqentry.text section. This is done only for asynchronous interrupts and explicitly not for program checks, which are synchronous and where the context beyond the program check is important to preserve. Despite machine checks being somewhat in between, they are extremely rare, and preserving context when possible is also of value. SVCs and Restart Interrupts are not relevant, one being always at the boundary to user space and the other being a one-time thing. IRQ entries filtering is also optionally used in ftrace function graph, where the same logic applies. | |
| Title | s390/entry: Mark IRQ entries to fix stack depot warnings | |
| References |
|
|
Status: PUBLISHED
Assigner: Linux
Published:
Updated: 2025-11-03T20:54:39.985Z
Reserved: 2025-01-11T12:32:49.349Z
Link: CVE-2024-57838
No data.
Status : Modified
Published: 2025-01-11T14:15:25.940
Modified: 2025-11-03T21:18:35.203
Link: CVE-2024-57838
OpenCVE Enrichment
Updated: 2025-07-12T22:23:56Z
Debian DLA
EUVD
Ubuntu USN