In the Linux kernel, the following vulnerability has been resolved:

x86/mm: Eliminate window where TLB flushes may be inadvertently skipped

tl;dr: There is a window in the mm switching code where the new CR3 is
set and the CPU should be getting TLB flushes for the new mm. But
should_flush_tlb() has a bug and suppresses the flush. Fix it by
widening the window where should_flush_tlb() sends an IPI.

Long Version:

=== History ===

There were a few things leading up to this.

First, updating mm_cpumask() was observed to be too expensive, so it was
made lazier. But being lazy caused too many unnecessary IPIs to CPUs
due to the now-lazy mm_cpumask(). So code was added to cull
mm_cpumask() periodically[2]. But that culling was a bit too aggressive
and skipped sending TLB flushes to CPUs that need them. So here we are
again.

=== Problem ===

The too-aggressive code in should_flush_tlb() strikes in this window:

// Turn on IPIs for this CPU/mm combination, but only
// if should_flush_tlb() agrees:
cpumask_set_cpu(cpu, mm_cpumask(next));

next_tlb_gen = atomic64_read(&next->context.tlb_gen);
choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
load_new_mm_cr3(need_flush);
// ^ After 'need_flush' is set to false, IPIs *MUST*
// be sent to this CPU and not be ignored.

this_cpu_write(cpu_tlbstate.loaded_mm, next);
// ^ Not until this point does should_flush_tlb()
// become true!

should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3()
and writing to 'loaded_mm', which is a window where they should not be
suppressed. Whoops.

=== Solution ===

Thankfully, the fuzzy "just about to write CR3" window is already marked
with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in
should_flush_tlb() is sufficient to ensure that the CPU is targeted with
an IPI.

This will cause more TLB flush IPIs. But the window is relatively small
and I do not expect this to cause any kind of measurable performance
impact.

Update the comment where LOADED_MM_SWITCHING is written since it grew
yet another user.

Peter Z also raised a concern that should_flush_tlb() might not observe
'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off()
writes them. Add a barrier to ensure that they are observed in the
order they are written.
Advisories
Source ID Title
Debian DLA Debian DLA DLA-4271-1 linux-6.1 security update
Debian DSA Debian DSA DSA-5925-1 linux security update
EUVD EUVD EUVD-2025-15884 In the Linux kernel, the following vulnerability has been resolved: x86/mm: Eliminate window where TLB flushes may be inadvertently skipped tl;dr: There is a window in the mm switching code where the new CR3 is set and the CPU should be getting TLB flushes for the new mm. But should_flush_tlb() has a bug and suppresses the flush. Fix it by widening the window where should_flush_tlb() sends an IPI. Long Version: === History === There were a few things leading up to this. First, updating mm_cpumask() was observed to be too expensive, so it was made lazier. But being lazy caused too many unnecessary IPIs to CPUs due to the now-lazy mm_cpumask(). So code was added to cull mm_cpumask() periodically[2]. But that culling was a bit too aggressive and skipped sending TLB flushes to CPUs that need them. So here we are again. === Problem === The too-aggressive code in should_flush_tlb() strikes in this window: // Turn on IPIs for this CPU/mm combination, but only // if should_flush_tlb() agrees: cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); load_new_mm_cr3(need_flush); // ^ After 'need_flush' is set to false, IPIs *MUST* // be sent to this CPU and not be ignored. this_cpu_write(cpu_tlbstate.loaded_mm, next); // ^ Not until this point does should_flush_tlb() // become true! should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3() and writing to 'loaded_mm', which is a window where they should not be suppressed. Whoops. === Solution === Thankfully, the fuzzy "just about to write CR3" window is already marked with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in should_flush_tlb() is sufficient to ensure that the CPU is targeted with an IPI. This will cause more TLB flush IPIs. But the window is relatively small and I do not expect this to cause any kind of measurable performance impact. Update the comment where LOADED_MM_SWITCHING is written since it grew yet another user. Peter Z also raised a concern that should_flush_tlb() might not observe 'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off() writes them. Add a barrier to ensure that they are observed in the order they are written.
Ubuntu USN Ubuntu USN USN-7654-1 Linux kernel vulnerabilities
Ubuntu USN Ubuntu USN USN-7654-2 Linux kernel (Real-time) vulnerabilities
Ubuntu USN Ubuntu USN USN-7654-3 Linux kernel (FIPS) vulnerabilities
Ubuntu USN Ubuntu USN USN-7654-4 Linux kernel (KVM) vulnerabilities
Ubuntu USN Ubuntu USN USN-7654-5 Linux kernel (Xilinx ZynqMP) vulnerabilities
Ubuntu USN Ubuntu USN USN-7655-1 Linux kernel (Intel IoTG) vulnerabilities
Ubuntu USN Ubuntu USN USN-7686-1 Linux kernel (Raspberry Pi) vulnerabilities
Ubuntu USN Ubuntu USN USN-7699-1 Linux kernel vulnerabilities
Ubuntu USN Ubuntu USN USN-7699-2 Linux kernel (HWE) vulnerabilities
Ubuntu USN Ubuntu USN USN-7711-1 Linux kernel (Azure) vulnerabilities
Ubuntu USN Ubuntu USN USN-7712-1 Linux kernel (Azure FIPS) vulnerabilities
Ubuntu USN Ubuntu USN USN-7712-2 Linux kernel (Azure) vulnerabilities
Ubuntu USN Ubuntu USN USN-7721-1 Linux kernel (Azure) vulnerabilities
Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Tue, 16 Dec 2025 20:45:00 +0000

Type Values Removed Values Added
First Time appeared Debian
Debian debian Linux
Weaknesses NVD-CWE-noinfo
CPEs cpe:2.3:o:debian:debian_linux:11.0:*:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.15:rc1:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.15:rc2:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.15:rc3:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.15:rc4:*:*:*:*:*:*
cpe:2.3:o:linux:linux_kernel:6.15:rc5:*:*:*:*:*:*
Vendors & Products Debian
Debian debian Linux
Metrics cvssV3_1

{'score': 7.0, 'vector': 'CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H'}

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}


Mon, 03 Nov 2025 20:30:00 +0000

Type Values Removed Values Added
References

Mon, 14 Jul 2025 13:45:00 +0000

Type Values Removed Values Added
Metrics epss

{'score': 0.00061}

epss

{'score': 0.00051}


Thu, 22 May 2025 02:45:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 7.0, 'vector': 'CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H'}

threat_severity

Moderate


Tue, 20 May 2025 16:15:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: x86/mm: Eliminate window where TLB flushes may be inadvertently skipped tl;dr: There is a window in the mm switching code where the new CR3 is set and the CPU should be getting TLB flushes for the new mm. But should_flush_tlb() has a bug and suppresses the flush. Fix it by widening the window where should_flush_tlb() sends an IPI. Long Version: === History === There were a few things leading up to this. First, updating mm_cpumask() was observed to be too expensive, so it was made lazier. But being lazy caused too many unnecessary IPIs to CPUs due to the now-lazy mm_cpumask(). So code was added to cull mm_cpumask() periodically[2]. But that culling was a bit too aggressive and skipped sending TLB flushes to CPUs that need them. So here we are again. === Problem === The too-aggressive code in should_flush_tlb() strikes in this window: // Turn on IPIs for this CPU/mm combination, but only // if should_flush_tlb() agrees: cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); load_new_mm_cr3(need_flush); // ^ After 'need_flush' is set to false, IPIs *MUST* // be sent to this CPU and not be ignored. this_cpu_write(cpu_tlbstate.loaded_mm, next); // ^ Not until this point does should_flush_tlb() // become true! should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3() and writing to 'loaded_mm', which is a window where they should not be suppressed. Whoops. === Solution === Thankfully, the fuzzy "just about to write CR3" window is already marked with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in should_flush_tlb() is sufficient to ensure that the CPU is targeted with an IPI. This will cause more TLB flush IPIs. But the window is relatively small and I do not expect this to cause any kind of measurable performance impact. Update the comment where LOADED_MM_SWITCHING is written since it grew yet another user. Peter Z also raised a concern that should_flush_tlb() might not observe 'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off() writes them. Add a barrier to ensure that they are observed in the order they are written.
Title x86/mm: Eliminate window where TLB flushes may be inadvertently skipped
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-11-03T19:57:49.771Z

Reserved: 2025-04-16T04:51:23.974Z

Link: CVE-2025-37964

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Analyzed

Published: 2025-05-20T16:15:34.683

Modified: 2025-12-16T20:30:11.323

Link: CVE-2025-37964

cve-icon Redhat

Severity : Moderate

Publid Date: 2025-05-20T00:00:00Z

Links: CVE-2025-37964 - Bugzilla

cve-icon OpenCVE Enrichment

Updated: 2025-06-24T09:44:23Z

Weaknesses