In the Linux kernel, the following vulnerability has been resolved:

netfs: fix reference leak

Commit 20d72b00ca81 ("netfs: Fix the request's work item to not
require a ref") modified netfs_alloc_request() to initialize the
reference counter to 2 instead of 1. The rationale was that the
requet's "work" would release the second reference after completion
(via netfs_{read,write}_collection_worker()). That works most of the
time if all goes well.

However, it leaks this additional reference if the request is released
before the I/O operation has been submitted: the error code path only
decrements the reference counter once and the work item will never be
queued because there will never be a completion.

This has caused outages of our whole server cluster today because
tasks were blocked in netfs_wait_for_outstanding_io(), leading to
deadlocks in Ceph (another bug that I will address soon in another
patch). This was caused by a netfs_pgpriv2_begin_copy_to_cache() call
which failed in fscache_begin_write_operation(). The leaked
netfs_io_request was never completed, leaving `netfs_inode.io_count`
with a positive value forever.

All of this is super-fragile code. Finding out which code paths will
lead to an eventual completion and which do not is hard to see:

- Some functions like netfs_create_write_req() allocate a request, but
will never submit any I/O.

- netfs_unbuffered_read_iter_locked() calls netfs_unbuffered_read()
and then netfs_put_request(); however, netfs_unbuffered_read() can
also fail early before submitting the I/O request, therefore another
netfs_put_request() call must be added there.

A rule of thumb is that functions that return a `netfs_io_request` do
not submit I/O, and all of their callers must be checked.

For my taste, the whole netfs code needs an overhaul to make reference
counting easier to understand and less fragile & obscure. But to fix
this bug here and now and produce a patch that is adequate for a
stable backport, I tried a minimal approach that quickly frees the
request object upon early failure.

I decided against adding a second netfs_put_request() each time
because that would cause code duplication which obscures the code
further. Instead, I added the function netfs_put_failed_request()
which frees such a failed request synchronously under the assumption
that the reference count is exactly 2 (as initially set by
netfs_alloc_request() and never touched), verified by a
WARN_ON_ONCE(). It then deinitializes the request object (without
going through the "cleanup_work" indirection) and frees the allocation
(with RCU protection to protect against concurrent access by
netfs_requests_seq_start()).

All code paths that fail early have been changed to call
netfs_put_failed_request() instead of netfs_put_request().
Additionally, I have added a netfs_put_request() call to
netfs_unbuffered_read() as explained above because the
netfs_put_failed_request() approach does not work there.
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Mon, 20 Oct 2025 15:45:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: netfs: fix reference leak Commit 20d72b00ca81 ("netfs: Fix the request's work item to not require a ref") modified netfs_alloc_request() to initialize the reference counter to 2 instead of 1. The rationale was that the requet's "work" would release the second reference after completion (via netfs_{read,write}_collection_worker()). That works most of the time if all goes well. However, it leaks this additional reference if the request is released before the I/O operation has been submitted: the error code path only decrements the reference counter once and the work item will never be queued because there will never be a completion. This has caused outages of our whole server cluster today because tasks were blocked in netfs_wait_for_outstanding_io(), leading to deadlocks in Ceph (another bug that I will address soon in another patch). This was caused by a netfs_pgpriv2_begin_copy_to_cache() call which failed in fscache_begin_write_operation(). The leaked netfs_io_request was never completed, leaving `netfs_inode.io_count` with a positive value forever. All of this is super-fragile code. Finding out which code paths will lead to an eventual completion and which do not is hard to see: - Some functions like netfs_create_write_req() allocate a request, but will never submit any I/O. - netfs_unbuffered_read_iter_locked() calls netfs_unbuffered_read() and then netfs_put_request(); however, netfs_unbuffered_read() can also fail early before submitting the I/O request, therefore another netfs_put_request() call must be added there. A rule of thumb is that functions that return a `netfs_io_request` do not submit I/O, and all of their callers must be checked. For my taste, the whole netfs code needs an overhaul to make reference counting easier to understand and less fragile & obscure. But to fix this bug here and now and produce a patch that is adequate for a stable backport, I tried a minimal approach that quickly frees the request object upon early failure. I decided against adding a second netfs_put_request() each time because that would cause code duplication which obscures the code further. Instead, I added the function netfs_put_failed_request() which frees such a failed request synchronously under the assumption that the reference count is exactly 2 (as initially set by netfs_alloc_request() and never touched), verified by a WARN_ON_ONCE(). It then deinitializes the request object (without going through the "cleanup_work" indirection) and frees the allocation (with RCU protection to protect against concurrent access by netfs_requests_seq_start()). All code paths that fail early have been changed to call netfs_put_failed_request() instead of netfs_put_request(). Additionally, I have added a netfs_put_request() call to netfs_unbuffered_read() as explained above because the netfs_put_failed_request() approach does not work there.
Title netfs: fix reference leak
References

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-10-20T15:26:53.880Z

Reserved: 2025-04-16T07:20:57.151Z

Link: CVE-2025-40007

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Received

Published: 2025-10-20T16:15:37.357

Modified: 2025-10-20T16:15:37.357

Link: CVE-2025-40007

cve-icon Redhat

No data.

cve-icon OpenCVE Enrichment

No data.