In the Linux kernel, the following vulnerability has been resolved:

af_unix: Initialise scc_index in unix_add_edge().

Quang Le reported that the AF_UNIX GC could garbage-collect a
receive queue of an alive in-flight socket, with a nice repro.

The repro consists of three stages.

1)
1-a. Create a single cyclic reference with many sockets
1-b. close() all sockets
1-c. Trigger GC

2)
2-a. Pass sk-A to an embryo sk-B
2-b. Pass sk-X to sk-X
2-c. Trigger GC

3)
3-a. accept() the embryo sk-B
3-b. Pass sk-B to sk-C
3-c. close() the in-flight sk-A
3-d. Trigger GC

As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices,
and unix_walk_scc() groups them into two different SCCs:

unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START)
unix_sk(sk-X)->vertex->scc_index = 3

Once GC completes, unix_graph_grouped is set to true.
Also, unix_graph_maybe_cyclic is set to true due to sk-X's
cyclic self-reference, which makes close() trigger GC.

At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and
links it to unix_unvisited_vertices.

unix_update_graph() is called at 3-a. and 3-b., but neither
unix_graph_grouped nor unix_graph_maybe_cyclic is changed
because both sk-B's listener and sk-C are not in-flight.

3-c decrements sk-A's file refcnt to 1.

Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast()
is finally called and iterates 3 sockets sk-A, sk-B, and sk-X:

sk-A -> sk-B (-> sk-C)
sk-X -> sk-X

This is totally fine. All of them are not yet close()d and
should be grouped into different SCCs.

However, unix_vertex_dead() misjudges that sk-A and sk-B are
in the same SCC and sk-A is dead.

unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong!
&&
sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree
^-- 1 in-flight count for sk-B
-> sk-A is dead !?

The problem is that unix_add_edge() does not initialise scc_index.

Stage 1) is used for heap spraying, making a newly allocated
vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START)
set by unix_walk_scc() at 1-c.

Let's track the max SCC index from the previous unix_walk_scc()
call and assign the max + 1 to a new vertex's scc_index.

This way, we can continue to avoid Tarjan's algorithm while
preventing misjudgments.
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Sat, 06 Dec 2025 00:15:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 7.0, 'vector': 'CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H'}

threat_severity

Moderate


Thu, 04 Dec 2025 13:00:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: af_unix: Initialise scc_index in unix_add_edge(). Quang Le reported that the AF_UNIX GC could garbage-collect a receive queue of an alive in-flight socket, with a nice repro. The repro consists of three stages. 1) 1-a. Create a single cyclic reference with many sockets 1-b. close() all sockets 1-c. Trigger GC 2) 2-a. Pass sk-A to an embryo sk-B 2-b. Pass sk-X to sk-X 2-c. Trigger GC 3) 3-a. accept() the embryo sk-B 3-b. Pass sk-B to sk-C 3-c. close() the in-flight sk-A 3-d. Trigger GC As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices, and unix_walk_scc() groups them into two different SCCs: unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START) unix_sk(sk-X)->vertex->scc_index = 3 Once GC completes, unix_graph_grouped is set to true. Also, unix_graph_maybe_cyclic is set to true due to sk-X's cyclic self-reference, which makes close() trigger GC. At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and links it to unix_unvisited_vertices. unix_update_graph() is called at 3-a. and 3-b., but neither unix_graph_grouped nor unix_graph_maybe_cyclic is changed because both sk-B's listener and sk-C are not in-flight. 3-c decrements sk-A's file refcnt to 1. Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast() is finally called and iterates 3 sockets sk-A, sk-B, and sk-X: sk-A -> sk-B (-> sk-C) sk-X -> sk-X This is totally fine. All of them are not yet close()d and should be grouped into different SCCs. However, unix_vertex_dead() misjudges that sk-A and sk-B are in the same SCC and sk-A is dead. unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong! && sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree ^-- 1 in-flight count for sk-B -> sk-A is dead !? The problem is that unix_add_edge() does not initialise scc_index. Stage 1) is used for heap spraying, making a newly allocated vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START) set by unix_walk_scc() at 1-c. Let's track the max SCC index from the previous unix_walk_scc() call and assign the max + 1 to a new vertex's scc_index. This way, we can continue to avoid Tarjan's algorithm while preventing misjudgments.
Title af_unix: Initialise scc_index in unix_add_edge().
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-12-04T12:38:31.601Z

Reserved: 2025-04-16T07:20:57.179Z

Link: CVE-2025-40214

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Awaiting Analysis

Published: 2025-12-04T13:15:48.157

Modified: 2025-12-04T17:15:08.283

Link: CVE-2025-40214

cve-icon Redhat

Severity : Moderate

Publid Date: 2025-12-04T00:00:00Z

Links: CVE-2025-40214 - Bugzilla

cve-icon OpenCVE Enrichment

No data.

Weaknesses

No weakness.