A vulnerability stemming from floating-point arithmetic precision errors exists in the QuickJS engine's implementation of TypedArray.prototype.indexOf() when a negative fromIndex argument is supplied.
* The fromIndex argument (read as a double variable, $d$) is used to calculate the starting position for the search.
* If d is negative, the index is calculated relative to the end of the array by adding the array's length (len) to d:
$$d_{new} = d + \text{len}$$
* Due to the inherent limitations of floating-point arithmetic, if the negative value $d$ is extremely small (e.g., $-1 \times 10^{-20}$), the addition $d + \text{len}$ can result in a loss of precision, yielding an outcome that is exactly equal to $\text{len}$.
* The result is then converted to an integer index $k$: $k = \text{len}$.
* The search function proceeds to read array elements starting from index $k$. Since valid indices are $0$ to $\text{len}-1$, starting the read at index $\text{len}$ is one element past the end of the array.
This allows an attacker to cause an Out-of-Bounds Read of one element immediately following the buffer. While the scope of this read is small (one element), it can potentially lead to Information Disclosure of adjacent memory contents, depending on the execution environment.
* The fromIndex argument (read as a double variable, $d$) is used to calculate the starting position for the search.
* If d is negative, the index is calculated relative to the end of the array by adding the array's length (len) to d:
$$d_{new} = d + \text{len}$$
* Due to the inherent limitations of floating-point arithmetic, if the negative value $d$ is extremely small (e.g., $-1 \times 10^{-20}$), the addition $d + \text{len}$ can result in a loss of precision, yielding an outcome that is exactly equal to $\text{len}$.
* The result is then converted to an integer index $k$: $k = \text{len}$.
* The search function proceeds to read array elements starting from index $k$. Since valid indices are $0$ to $\text{len}-1$, starting the read at index $\text{len}$ is one element past the end of the array.
This allows an attacker to cause an Out-of-Bounds Read of one element immediately following the buffer. While the scope of this read is small (one element), it can potentially lead to Information Disclosure of adjacent memory contents, depending on the execution environment.
Metrics
Affected Vendors & Products
Advisories
No advisories yet.
Fixes
Solution
No solution given by the vendor.
Workaround
No workaround given by the vendor.
References
History
Thu, 16 Oct 2025 18:15:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Metrics |
ssvc
|
Thu, 16 Oct 2025 16:00:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Description | A vulnerability stemming from floating-point arithmetic precision errors exists in the QuickJS engine's implementation of TypedArray.prototype.indexOf() when a negative fromIndex argument is supplied. * The fromIndex argument (read as a double variable, $d$) is used to calculate the starting position for the search. * If d is negative, the index is calculated relative to the end of the array by adding the array's length (len) to d: $$d_{new} = d + \text{len}$$ * Due to the inherent limitations of floating-point arithmetic, if the negative value $d$ is extremely small (e.g., $-1 \times 10^{-20}$), the addition $d + \text{len}$ can result in a loss of precision, yielding an outcome that is exactly equal to $\text{len}$. * The result is then converted to an integer index $k$: $k = \text{len}$. * The search function proceeds to read array elements starting from index $k$. Since valid indices are $0$ to $\text{len}-1$, starting the read at index $\text{len}$ is one element past the end of the array. This allows an attacker to cause an Out-of-Bounds Read of one element immediately following the buffer. While the scope of this read is small (one element), it can potentially lead to Information Disclosure of adjacent memory contents, depending on the execution environment. | |
Title | Heap out-of-bounds read in js_typed_array_indexOf in QuickJS | |
Weaknesses | CWE-125 | |
References |
| |
Metrics |
cvssV4_0
|

Status: PUBLISHED
Assigner: Google
Published:
Updated: 2025-10-16T18:02:02.585Z
Reserved: 2025-10-15T08:47:41.878Z
Link: CVE-2025-62492

Updated: 2025-10-16T18:01:37.972Z

Status : Received
Published: 2025-10-16T16:15:39.620
Modified: 2025-10-16T16:15:39.620
Link: CVE-2025-62492

No data.

No data.