In the Linux kernel, the following vulnerability has been resolved:

scs: fix a wrong parameter in __scs_magic

__scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is
given. 'task_scs(tsk)' is the starting address of the task's shadow call
stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's
shadow call stack. Here should be '__scs_magic(task_scs(tsk))'.

The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE
is enabled, the shadow call stack usage checking function
(scs_check_usage) would scan an incorrect memory range. This could lead

1. **Inaccurate stack usage reporting**: The function would calculate
wrong usage statistics for the shadow call stack, potentially showing
incorrect value in kmsg.

2. **Potential kernel crash**: If the value of __scs_magic(tsk)is
greater than that of __scs_magic(task_scs(tsk)), the for loop may
access unmapped memory, potentially causing a kernel panic. However,
this scenario is unlikely because task_struct is allocated via the slab
allocator (which typically returns lower addresses), while the shadow
call stack returned by task_scs(tsk) is allocated via vmalloc(which
typically returns higher addresses).

However, since this is purely a debugging feature
(CONFIG_DEBUG_STACK_USAGE), normal production systems should be not
unaffected. The bug only impacts developers and testers who are actively
debugging stack usage with this configuration enabled.
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Wed, 14 Jan 2026 15:15:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: scs: fix a wrong parameter in __scs_magic __scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is given. 'task_scs(tsk)' is the starting address of the task's shadow call stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's shadow call stack. Here should be '__scs_magic(task_scs(tsk))'. The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE is enabled, the shadow call stack usage checking function (scs_check_usage) would scan an incorrect memory range. This could lead 1. **Inaccurate stack usage reporting**: The function would calculate wrong usage statistics for the shadow call stack, potentially showing incorrect value in kmsg. 2. **Potential kernel crash**: If the value of __scs_magic(tsk)is greater than that of __scs_magic(task_scs(tsk)), the for loop may access unmapped memory, potentially causing a kernel panic. However, this scenario is unlikely because task_struct is allocated via the slab allocator (which typically returns lower addresses), while the shadow call stack returned by task_scs(tsk) is allocated via vmalloc(which typically returns higher addresses). However, since this is purely a debugging feature (CONFIG_DEBUG_STACK_USAGE), normal production systems should be not unaffected. The bug only impacts developers and testers who are actively debugging stack usage with this configuration enabled.
Title scs: fix a wrong parameter in __scs_magic
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2026-01-14T15:05:52.389Z

Reserved: 2026-01-13T15:30:19.651Z

Link: CVE-2025-71102

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Awaiting Analysis

Published: 2026-01-14T15:15:59.210

Modified: 2026-01-14T16:25:12.057

Link: CVE-2025-71102

cve-icon Redhat

No data.

cve-icon OpenCVE Enrichment

No data.

Weaknesses

No weakness.