In the Linux kernel, the following vulnerability has been resolved:

vsock/virtio: cap TX credit to local buffer size

The virtio transports derives its TX credit directly from peer_buf_alloc,
which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value.

On the host side this means that the amount of data we are willing to
queue for a connection is scaled by a guest-chosen buffer size, rather
than the host's own vsock configuration. A malicious guest can advertise
a large buffer and read slowly, causing the host to allocate a
correspondingly large amount of sk_buff memory.
The same thing would happen in the guest with a malicious host, since
virtio transports share the same code base.

Introduce a small helper, virtio_transport_tx_buf_size(), that
returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume
peer_buf_alloc.

This ensures the effective TX window is bounded by both the peer's
advertised buffer and our own buf_alloc (already clamped to
buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer
cannot force the other to queue more data than allowed by its own
vsock settings.

On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with
32 guest vsock connections advertising 2 GiB each and reading slowly
drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only
recovered after killing the QEMU process. That said, if QEMU memory is
limited with cgroups, the maximum memory used will be limited.

With this patch applied:

Before:
MemFree: ~61.6 GiB
Slab: ~142 MiB
SUnreclaim: ~117 MiB

After 32 high-credit connections:
MemFree: ~61.5 GiB
Slab: ~178 MiB
SUnreclaim: ~152 MiB

Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest
remains responsive.

Compatibility with non-virtio transports:

- VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per
socket based on the local vsk->buffer_* values; the remote side
cannot enlarge those queues beyond what the local endpoint
configured.

- Hyper-V's vsock transport uses fixed-size VMBus ring buffers and
an MTU bound; there is no peer-controlled credit field comparable
to peer_buf_alloc, and the remote endpoint cannot drive in-flight
kernel memory above those ring sizes.

- The loopback path reuses virtio_transport_common.c, so it
naturally follows the same semantics as the virtio transport.

This change is limited to virtio_transport_common.c and thus affects
virtio-vsock, vhost-vsock, and loopback, bringing them in line with the
"remote window intersected with local policy" behaviour that VMCI and
Hyper-V already effectively have.

[Stefano: small adjustments after changing the previous patch]
[Stefano: tweak the commit message]

Project Subscriptions

Vendors Products
Linux Kernel Subscribe
Advisories

No advisories yet.

Fixes

Solution

No solution given by the vendor.


Workaround

No workaround given by the vendor.

History

Wed, 04 Feb 2026 16:30:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: cap TX credit to local buffer size The virtio transports derives its TX credit directly from peer_buf_alloc, which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value. On the host side this means that the amount of data we are willing to queue for a connection is scaled by a guest-chosen buffer size, rather than the host's own vsock configuration. A malicious guest can advertise a large buffer and read slowly, causing the host to allocate a correspondingly large amount of sk_buff memory. The same thing would happen in the guest with a malicious host, since virtio transports share the same code base. Introduce a small helper, virtio_transport_tx_buf_size(), that returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume peer_buf_alloc. This ensures the effective TX window is bounded by both the peer's advertised buffer and our own buf_alloc (already clamped to buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer cannot force the other to queue more data than allowed by its own vsock settings. On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with 32 guest vsock connections advertising 2 GiB each and reading slowly drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only recovered after killing the QEMU process. That said, if QEMU memory is limited with cgroups, the maximum memory used will be limited. With this patch applied: Before: MemFree: ~61.6 GiB Slab: ~142 MiB SUnreclaim: ~117 MiB After 32 high-credit connections: MemFree: ~61.5 GiB Slab: ~178 MiB SUnreclaim: ~152 MiB Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest remains responsive. Compatibility with non-virtio transports: - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per socket based on the local vsk->buffer_* values; the remote side cannot enlarge those queues beyond what the local endpoint configured. - Hyper-V's vsock transport uses fixed-size VMBus ring buffers and an MTU bound; there is no peer-controlled credit field comparable to peer_buf_alloc, and the remote endpoint cannot drive in-flight kernel memory above those ring sizes. - The loopback path reuses virtio_transport_common.c, so it naturally follows the same semantics as the virtio transport. This change is limited to virtio_transport_common.c and thus affects virtio-vsock, vhost-vsock, and loopback, bringing them in line with the "remote window intersected with local policy" behaviour that VMCI and Hyper-V already effectively have. [Stefano: small adjustments after changing the previous patch] [Stefano: tweak the commit message]
Title vsock/virtio: cap TX credit to local buffer size
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

Projects

Sign in to view the affected projects.

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2026-02-04T16:08:10.047Z

Reserved: 2026-01-13T15:37:45.961Z

Link: CVE-2026-23086

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Received

Published: 2026-02-04T17:16:19.467

Modified: 2026-02-04T17:16:19.467

Link: CVE-2026-23086

cve-icon Redhat

No data.

cve-icon OpenCVE Enrichment

No data.

Weaknesses

No weakness.