Search Results (323598 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-49227 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: igc: avoid kernel warning when changing RX ring parameters Calling ethtool changing the RX ring parameters like this: $ ethtool -G eth0 rx 1024 on igc triggers kernel warnings like this: [ 225.198467] ------------[ cut here ]------------ [ 225.198473] Missing unregister, handled but fix driver [ 225.198485] WARNING: CPU: 7 PID: 959 at net/core/xdp.c:168 xdp_rxq_info_reg+0x79/0xd0 [...] [ 225.198601] Call Trace: [ 225.198604] <TASK> [ 225.198609] igc_setup_rx_resources+0x3f/0xe0 [igc] [ 225.198617] igc_ethtool_set_ringparam+0x30e/0x450 [igc] [ 225.198626] ethnl_set_rings+0x18a/0x250 [ 225.198631] genl_family_rcv_msg_doit+0xca/0x110 [ 225.198637] genl_rcv_msg+0xce/0x1c0 [ 225.198640] ? rings_prepare_data+0x60/0x60 [ 225.198644] ? genl_get_cmd+0xd0/0xd0 [ 225.198647] netlink_rcv_skb+0x4e/0xf0 [ 225.198652] genl_rcv+0x24/0x40 [ 225.198655] netlink_unicast+0x20e/0x330 [ 225.198659] netlink_sendmsg+0x23f/0x480 [ 225.198663] sock_sendmsg+0x5b/0x60 [ 225.198667] __sys_sendto+0xf0/0x160 [ 225.198671] ? handle_mm_fault+0xb2/0x280 [ 225.198676] ? do_user_addr_fault+0x1eb/0x690 [ 225.198680] __x64_sys_sendto+0x20/0x30 [ 225.198683] do_syscall_64+0x38/0x90 [ 225.198687] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 225.198693] RIP: 0033:0x7f7ae38ac3aa igc_ethtool_set_ringparam() copies the igc_ring structure but neglects to reset the xdp_rxq_info member before calling igc_setup_rx_resources(). This in turn calls xdp_rxq_info_reg() with an already registered xdp_rxq_info. Make sure to unregister the xdp_rxq_info structure first in igc_setup_rx_resources.
CVE-2022-49226 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: asix: add proper error handling of usb read errors Syzbot once again hit uninit value in asix driver. The problem still the same -- asix_read_cmd() reads less bytes, than was requested by caller. Since all read requests are performed via asix_read_cmd() let's catch usb related error there and add __must_check notation to be sure all callers actually check return value. So, this patch adds sanity check inside asix_read_cmd(), that simply checks if bytes read are not less, than was requested and adds missing error handling of asix_read_cmd() all across the driver code.
CVE-2022-49220 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dax: make sure inodes are flushed before destroy cache A bug can be triggered by following command $ modprobe nd_pmem && modprobe -r nd_pmem [ 10.060014] BUG dax_cache (Not tainted): Objects remaining in dax_cache on __kmem_cache_shutdown() [ 10.060938] Slab 0x0000000085b729ac objects=9 used=1 fp=0x000000004f5ae469 flags=0x200000000010200(slab|head|node) [ 10.062433] Call Trace: [ 10.062673] dump_stack_lvl+0x34/0x44 [ 10.062865] slab_err+0x90/0xd0 [ 10.063619] __kmem_cache_shutdown+0x13b/0x2f0 [ 10.063848] kmem_cache_destroy+0x4a/0x110 [ 10.064058] __x64_sys_delete_module+0x265/0x300 This is caused by dax_fs_exit() not flushing inodes before destroy cache. To fix this issue, call rcu_barrier() before destroy cache.
CVE-2022-49229 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ptp: unregister virtual clocks when unregistering physical clock. When unregistering a physical clock which has some virtual clocks, unregister the virtual clocks with it. This fixes the following oops, which can be triggered by unloading a driver providing a PTP clock when it has enabled virtual clocks: BUG: unable to handle page fault for address: ffffffffc04fc4d8 Oops: 0000 [#1] PREEMPT SMP NOPTI RIP: 0010:ptp_vclock_read+0x31/0xb0 Call Trace: timecounter_read+0xf/0x50 ptp_vclock_refresh+0x2c/0x50 ? ptp_clock_release+0x40/0x40 ptp_aux_kworker+0x17/0x30 kthread_worker_fn+0x9b/0x240 ? kthread_should_park+0x30/0x30 kthread+0xe2/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30
CVE-2022-49243 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: atmel: Add missing of_node_put() in at91sam9g20ek_audio_probe This node pointer is returned by of_parse_phandle() with refcount incremented in this function. Calling of_node_put() to avoid the refcount leak.
CVE-2022-49247 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: stk1160: If start stream fails, return buffers with VB2_BUF_STATE_QUEUED If the callback 'start_streaming' fails, then all queued buffers in the driver should be returned with state 'VB2_BUF_STATE_QUEUED'. Currently, they are returned with 'VB2_BUF_STATE_ERROR' which is wrong. Fix this. This also fixes the warning: [ 65.583633] WARNING: CPU: 5 PID: 593 at drivers/media/common/videobuf2/videobuf2-core.c:1612 vb2_start_streaming+0xd4/0x160 [videobuf2_common] [ 65.585027] Modules linked in: snd_usb_audio snd_hwdep snd_usbmidi_lib snd_rawmidi snd_soc_hdmi_codec dw_hdmi_i2s_audio saa7115 stk1160 videobuf2_vmalloc videobuf2_memops videobuf2_v4l2 videobuf2_common videodev mc crct10dif_ce panfrost snd_soc_simple_card snd_soc_audio_graph_card snd_soc_spdif_tx snd_soc_simple_card_utils gpu_sched phy_rockchip_pcie snd_soc_rockchip_i2s rockchipdrm analogix_dp dw_mipi_dsi dw_hdmi cec drm_kms_helper drm rtc_rk808 rockchip_saradc industrialio_triggered_buffer kfifo_buf rockchip_thermal pcie_rockchip_host ip_tables x_tables ipv6 [ 65.589383] CPU: 5 PID: 593 Comm: v4l2src0:src Tainted: G W 5.16.0-rc4-62408-g32447129cb30-dirty #14 [ 65.590293] Hardware name: Radxa ROCK Pi 4B (DT) [ 65.590696] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 65.591304] pc : vb2_start_streaming+0xd4/0x160 [videobuf2_common] [ 65.591850] lr : vb2_start_streaming+0x6c/0x160 [videobuf2_common] [ 65.592395] sp : ffff800012bc3ad0 [ 65.592685] x29: ffff800012bc3ad0 x28: 0000000000000000 x27: ffff800012bc3cd8 [ 65.593312] x26: 0000000000000000 x25: ffff00000d8a7800 x24: 0000000040045612 [ 65.593938] x23: ffff800011323000 x22: ffff800012bc3cd8 x21: ffff00000908a8b0 [ 65.594562] x20: ffff00000908a8c8 x19: 00000000fffffff4 x18: ffffffffffffffff [ 65.595188] x17: 000000040044ffff x16: 00400034b5503510 x15: ffff800011323f78 [ 65.595813] x14: ffff000013163886 x13: ffff000013163885 x12: 00000000000002ce [ 65.596439] x11: 0000000000000028 x10: 0000000000000001 x9 : 0000000000000228 [ 65.597064] x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff726c5e78 [ 65.597690] x5 : ffff800012bc3990 x4 : 0000000000000000 x3 : ffff000009a34880 [ 65.598315] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000007cd99f0 [ 65.598940] Call trace: [ 65.599155] vb2_start_streaming+0xd4/0x160 [videobuf2_common] [ 65.599672] vb2_core_streamon+0x17c/0x1a8 [videobuf2_common] [ 65.600179] vb2_streamon+0x54/0x88 [videobuf2_v4l2] [ 65.600619] vb2_ioctl_streamon+0x54/0x60 [videobuf2_v4l2] [ 65.601103] v4l_streamon+0x3c/0x50 [videodev] [ 65.601521] __video_do_ioctl+0x1a4/0x428 [videodev] [ 65.601977] video_usercopy+0x320/0x828 [videodev] [ 65.602419] video_ioctl2+0x3c/0x58 [videodev] [ 65.602830] v4l2_ioctl+0x60/0x90 [videodev] [ 65.603227] __arm64_sys_ioctl+0xa8/0xe0 [ 65.603576] invoke_syscall+0x54/0x118 [ 65.603911] el0_svc_common.constprop.3+0x84/0x100 [ 65.604332] do_el0_svc+0x34/0xa0 [ 65.604625] el0_svc+0x1c/0x50 [ 65.604897] el0t_64_sync_handler+0x88/0xb0 [ 65.605264] el0t_64_sync+0x16c/0x170 [ 65.605587] ---[ end trace 578e0ba07742170d ]---
CVE-2022-49259 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: don't delete queue kobject before its children kobjects aren't supposed to be deleted before their child kobjects are deleted. Apparently this is usually benign; however, a WARN will be triggered if one of the child kobjects has a named attribute group: sysfs group 'modes' not found for kobject 'crypto' WARNING: CPU: 0 PID: 1 at fs/sysfs/group.c:278 sysfs_remove_group+0x72/0x80 ... Call Trace: sysfs_remove_groups+0x29/0x40 fs/sysfs/group.c:312 __kobject_del+0x20/0x80 lib/kobject.c:611 kobject_cleanup+0xa4/0x140 lib/kobject.c:696 kobject_release lib/kobject.c:736 [inline] kref_put include/linux/kref.h:65 [inline] kobject_put+0x53/0x70 lib/kobject.c:753 blk_crypto_sysfs_unregister+0x10/0x20 block/blk-crypto-sysfs.c:159 blk_unregister_queue+0xb0/0x110 block/blk-sysfs.c:962 del_gendisk+0x117/0x250 block/genhd.c:610 Fix this by moving the kobject_del() and the corresponding kobject_uevent() to the correct place.
CVE-2022-49255 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix missing free nid in f2fs_handle_failed_inode This patch fixes xfstests/generic/475 failure. [ 293.680694] F2FS-fs (dm-1): May loss orphan inode, run fsck to fix. [ 293.685358] Buffer I/O error on dev dm-1, logical block 8388592, async page read [ 293.691527] Buffer I/O error on dev dm-1, logical block 8388592, async page read [ 293.691764] sh (7615): drop_caches: 3 [ 293.691819] sh (7616): drop_caches: 3 [ 293.694017] Buffer I/O error on dev dm-1, logical block 1, async page read [ 293.695659] sh (7618): drop_caches: 3 [ 293.696979] sh (7617): drop_caches: 3 [ 293.700290] sh (7623): drop_caches: 3 [ 293.708621] sh (7626): drop_caches: 3 [ 293.711386] sh (7628): drop_caches: 3 [ 293.711825] sh (7627): drop_caches: 3 [ 293.716738] sh (7630): drop_caches: 3 [ 293.719613] sh (7632): drop_caches: 3 [ 293.720971] sh (7633): drop_caches: 3 [ 293.727741] sh (7634): drop_caches: 3 [ 293.730783] sh (7636): drop_caches: 3 [ 293.732681] sh (7635): drop_caches: 3 [ 293.732988] sh (7637): drop_caches: 3 [ 293.738836] sh (7639): drop_caches: 3 [ 293.740568] sh (7641): drop_caches: 3 [ 293.743053] sh (7640): drop_caches: 3 [ 293.821889] ------------[ cut here ]------------ [ 293.824654] kernel BUG at fs/f2fs/node.c:3334! [ 293.826226] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 293.828713] CPU: 0 PID: 7653 Comm: umount Tainted: G OE 5.17.0-rc1-custom #1 [ 293.830946] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [ 293.832526] RIP: 0010:f2fs_destroy_node_manager+0x33f/0x350 [f2fs] [ 293.833905] Code: e8 d6 3d f9 f9 48 8b 45 d0 65 48 2b 04 25 28 00 00 00 75 1a 48 81 c4 28 03 00 00 5b 41 5c 41 5d 41 5e 41 5f 5d c3 0f 0b [ 293.837783] RSP: 0018:ffffb04ec31e7a20 EFLAGS: 00010202 [ 293.839062] RAX: 0000000000000001 RBX: ffff9df947db2eb8 RCX: 0000000080aa0072 [ 293.840666] RDX: 0000000000000000 RSI: ffffe86c0432a140 RDI: ffffffffc0b72a21 [ 293.842261] RBP: ffffb04ec31e7d70 R08: ffff9df94ca85780 R09: 0000000080aa0072 [ 293.843909] R10: ffff9df94ca85700 R11: ffff9df94e1ccf58 R12: ffff9df947db2e00 [ 293.845594] R13: ffff9df947db2ed0 R14: ffff9df947db2eb8 R15: ffff9df947db2eb8 [ 293.847855] FS: 00007f5a97379800(0000) GS:ffff9dfa77c00000(0000) knlGS:0000000000000000 [ 293.850647] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 293.852940] CR2: 00007f5a97528730 CR3: 000000010bc76005 CR4: 0000000000370ef0 [ 293.854680] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 293.856423] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 293.858380] Call Trace: [ 293.859302] <TASK> [ 293.860311] ? ttwu_do_wakeup+0x1c/0x170 [ 293.861800] ? ttwu_do_activate+0x6d/0xb0 [ 293.863057] ? _raw_spin_unlock_irqrestore+0x29/0x40 [ 293.864411] ? try_to_wake_up+0x9d/0x5e0 [ 293.865618] ? debug_smp_processor_id+0x17/0x20 [ 293.866934] ? debug_smp_processor_id+0x17/0x20 [ 293.868223] ? free_unref_page+0xbf/0x120 [ 293.869470] ? __free_slab+0xcb/0x1c0 [ 293.870614] ? preempt_count_add+0x7a/0xc0 [ 293.871811] ? __slab_free+0xa0/0x2d0 [ 293.872918] ? __wake_up_common_lock+0x8a/0xc0 [ 293.874186] ? __slab_free+0xa0/0x2d0 [ 293.875305] ? free_inode_nonrcu+0x20/0x20 [ 293.876466] ? free_inode_nonrcu+0x20/0x20 [ 293.877650] ? debug_smp_processor_id+0x17/0x20 [ 293.878949] ? call_rcu+0x11a/0x240 [ 293.880060] ? f2fs_destroy_stats+0x59/0x60 [f2fs] [ 293.881437] ? kfree+0x1fe/0x230 [ 293.882674] f2fs_put_super+0x160/0x390 [f2fs] [ 293.883978] generic_shutdown_super+0x7a/0x120 [ 293.885274] kill_block_super+0x27/0x50 [ 293.886496] kill_f2fs_super+0x7f/0x100 [f2fs] [ 293.887806] deactivate_locked_super+0x35/0xa0 [ 293.889271] deactivate_super+0x40/0x50 [ 293.890513] cleanup_mnt+0x139/0x190 [ 293.891689] __cleanup_mnt+0x12/0x20 [ 293.892850] task_work_run+0x64/0xa0 [ 293.894035] exit_to_user_mode_prepare+0x1b7/ ---truncated---
CVE-2022-49260 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/sec - fix the aead software fallback for engine Due to the subreq pointer misuse the private context memory. The aead soft crypto occasionally casues the OS panic as setting the 64K page. Here is fix it.
CVE-2022-49264 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: exec: Force single empty string when argv is empty Quoting[1] Ariadne Conill: "In several other operating systems, it is a hard requirement that the second argument to execve(2) be the name of a program, thus prohibiting a scenario where argc < 1. POSIX 2017 also recommends this behaviour, but it is not an explicit requirement[2]: The argument arg0 should point to a filename string that is associated with the process being started by one of the exec functions. ... Interestingly, Michael Kerrisk opened an issue about this in 2008[3], but there was no consensus to support fixing this issue then. Hopefully now that CVE-2021-4034 shows practical exploitative use[4] of this bug in a shellcode, we can reconsider. This issue is being tracked in the KSPP issue tracker[5]." While the initial code searches[6][7] turned up what appeared to be mostly corner case tests, trying to that just reject argv == NULL (or an immediately terminated pointer list) quickly started tripping[8] existing userspace programs. The next best approach is forcing a single empty string into argv and adjusting argc to match. The number of programs depending on argc == 0 seems a smaller set than those calling execve with a NULL argv. Account for the additional stack space in bprm_stack_limits(). Inject an empty string when argc == 0 (and set argc = 1). Warn about the case so userspace has some notice about the change: process './argc0' launched './argc0' with NULL argv: empty string added Additionally WARN() and reject NULL argv usage for kernel threads. [1] https://lore.kernel.org/lkml/20220127000724.15106-1-ariadne@dereferenced.org/ [2] https://pubs.opengroup.org/onlinepubs/9699919799/functions/exec.html [3] https://bugzilla.kernel.org/show_bug.cgi?id=8408 [4] https://www.qualys.com/2022/01/25/cve-2021-4034/pwnkit.txt [5] https://github.com/KSPP/linux/issues/176 [6] https://codesearch.debian.net/search?q=execve%5C+*%5C%28%5B%5E%2C%5D%2B%2C+*NULL&literal=0 [7] https://codesearch.debian.net/search?q=execlp%3F%5Cs*%5C%28%5B%5E%2C%5D%2B%2C%5Cs*NULL&literal=0 [8] https://lore.kernel.org/lkml/20220131144352.GE16385@xsang-OptiPlex-9020/
CVE-2022-49265 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: domains: Fix sleep-in-atomic bug caused by genpd_debug_remove() When a genpd with GENPD_FLAG_IRQ_SAFE gets removed, the following sleep-in-atomic bug will be seen, as genpd_debug_remove() will be called with a spinlock being held. [ 0.029183] BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1460 [ 0.029204] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1, name: swapper/0 [ 0.029219] preempt_count: 1, expected: 0 [ 0.029230] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.17.0-rc4+ #489 [ 0.029245] Hardware name: Thundercomm TurboX CM2290 (DT) [ 0.029256] Call trace: [ 0.029265] dump_backtrace.part.0+0xbc/0xd0 [ 0.029285] show_stack+0x3c/0xa0 [ 0.029298] dump_stack_lvl+0x7c/0xa0 [ 0.029311] dump_stack+0x18/0x34 [ 0.029323] __might_resched+0x10c/0x13c [ 0.029338] __might_sleep+0x4c/0x80 [ 0.029351] down_read+0x24/0xd0 [ 0.029363] lookup_one_len_unlocked+0x9c/0xcc [ 0.029379] lookup_positive_unlocked+0x10/0x50 [ 0.029392] debugfs_lookup+0x68/0xac [ 0.029406] genpd_remove.part.0+0x12c/0x1b4 [ 0.029419] of_genpd_remove_last+0xa8/0xd4 [ 0.029434] psci_cpuidle_domain_probe+0x174/0x53c [ 0.029449] platform_probe+0x68/0xe0 [ 0.029462] really_probe+0x190/0x430 [ 0.029473] __driver_probe_device+0x90/0x18c [ 0.029485] driver_probe_device+0x40/0xe0 [ 0.029497] __driver_attach+0xf4/0x1d0 [ 0.029508] bus_for_each_dev+0x70/0xd0 [ 0.029523] driver_attach+0x24/0x30 [ 0.029534] bus_add_driver+0x164/0x22c [ 0.029545] driver_register+0x78/0x130 [ 0.029556] __platform_driver_register+0x28/0x34 [ 0.029569] psci_idle_init_domains+0x1c/0x28 [ 0.029583] do_one_initcall+0x50/0x1b0 [ 0.029595] kernel_init_freeable+0x214/0x280 [ 0.029609] kernel_init+0x2c/0x13c [ 0.029622] ret_from_fork+0x10/0x20 It doesn't seem necessary to call genpd_debug_remove() with the lock, so move it out from locking to fix the problem.
CVE-2022-49266 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix rq-qos breakage from skipping rq_qos_done_bio() a647a524a467 ("block: don't call rq_qos_ops->done_bio if the bio isn't tracked") made bio_endio() skip rq_qos_done_bio() if BIO_TRACKED is not set. While this fixed a potential oops, it also broke blk-iocost by skipping the done_bio callback for merged bios. Before, whether a bio goes through rq_qos_throttle() or rq_qos_merge(), rq_qos_done_bio() would be called on the bio on completion with BIO_TRACKED distinguishing the former from the latter. rq_qos_done_bio() is not called for bios which wenth through rq_qos_merge(). This royally confuses blk-iocost as the merged bios never finish and are considered perpetually in-flight. One reliably reproducible failure mode is an intermediate cgroup geting stuck active preventing its children from being activated due to the leaf-only rule, leading to loss of control. The following is from resctl-bench protection scenario which emulates isolating a web server like workload from a memory bomb run on an iocost configuration which should yield a reasonable level of protection. # cat /sys/block/nvme2n1/device/model Samsung SSD 970 PRO 512GB # cat /sys/fs/cgroup/io.cost.model 259:0 ctrl=user model=linear rbps=834913556 rseqiops=93622 rrandiops=102913 wbps=618985353 wseqiops=72325 wrandiops=71025 # cat /sys/fs/cgroup/io.cost.qos 259:0 enable=1 ctrl=user rpct=95.00 rlat=18776 wpct=95.00 wlat=8897 min=60.00 max=100.00 # resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1 ... Memory Hog Summary ================== IO Latency: R p50=242u:336u/2.5m p90=794u:1.4m/7.5m p99=2.7m:8.0m/62.5m max=8.0m:36.4m/350m W p50=221u:323u/1.5m p90=709u:1.2m/5.5m p99=1.5m:2.5m/9.5m max=6.9m:35.9m/350m Isolation and Request Latency Impact Distributions: min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev isol% 15.90 15.90 15.90 40.05 57.24 59.07 60.01 74.63 74.63 90.35 90.35 58.12 15.82 lat-imp% 0 0 0 0 0 4.55 14.68 15.54 233.5 548.1 548.1 53.88 143.6 Result: isol=58.12:15.82% lat_imp=53.88%:143.6 work_csv=100.0% missing=3.96% The isolation result of 58.12% is close to what this device would show without any IO control. Fix it by introducing a new flag BIO_QOS_MERGED to mark merged bios and calling rq_qos_done_bio() on them too. For consistency and clarity, rename BIO_TRACKED to BIO_QOS_THROTTLED. The flag checks are moved into rq_qos_done_bio() so that it's next to the code paths that set the flags. With the patch applied, the above same benchmark shows: # resctl-bench -m 29.6G -r out.json run protection::scenario=mem-hog,loops=1 ... Memory Hog Summary ================== IO Latency: R p50=123u:84.4u/985u p90=322u:256u/2.5m p99=1.6m:1.4m/9.5m max=11.1m:36.0m/350m W p50=429u:274u/995u p90=1.7m:1.3m/4.5m p99=3.4m:2.7m/11.5m max=7.9m:5.9m/26.5m Isolation and Request Latency Impact Distributions: min p01 p05 p10 p25 p50 p75 p90 p95 p99 max mean stdev isol% 84.91 84.91 89.51 90.73 92.31 94.49 96.36 98.04 98.71 100.0 100.0 94.42 2.81 lat-imp% 0 0 0 0 0 2.81 5.73 11.11 13.92 17.53 22.61 4.10 4.68 Result: isol=94.42:2.81% lat_imp=4.10%:4.68 work_csv=58.34% missing=0%
CVE-2022-49267 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mmc: core: use sysfs_emit() instead of sprintf() sprintf() (still used in the MMC core for the sysfs output) is vulnerable to the buffer overflow. Use the new-fangled sysfs_emit() instead. Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool.
CVE-2022-49269 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: isotp: sanitize CAN ID checks in isotp_bind() Syzbot created an environment that lead to a state machine status that can not be reached with a compliant CAN ID address configuration. The provided address information consisted of CAN ID 0x6000001 and 0xC28001 which both boil down to 11 bit CAN IDs 0x001 in sending and receiving. Sanitize the SFF/EFF CAN ID values before performing the address checks.
CVE-2022-49281 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix handlecache and multiuser In multiuser each individual user has their own tcon structure for the share and thus their own handle for a cached directory. When we umount such a share we much make sure to release the pinned down dentry for each such tcon and not just the master tcon. Otherwise we will get nasty warnings on umount that dentries are still in use: [ 3459.590047] BUG: Dentry 00000000115c6f41{i=12000000019d95,n=/} still in use\ (2) [unmount of cifs cifs] ... [ 3459.590492] Call Trace: [ 3459.590500] d_walk+0x61/0x2a0 [ 3459.590518] ? shrink_lock_dentry.part.0+0xe0/0xe0 [ 3459.590526] shrink_dcache_for_umount+0x49/0x110 [ 3459.590535] generic_shutdown_super+0x1a/0x110 [ 3459.590542] kill_anon_super+0x14/0x30 [ 3459.590549] cifs_kill_sb+0xf5/0x104 [cifs] [ 3459.590773] deactivate_locked_super+0x36/0xa0 [ 3459.590782] cleanup_mnt+0x131/0x190 [ 3459.590789] task_work_run+0x5c/0x90 [ 3459.590798] exit_to_user_mode_loop+0x151/0x160 [ 3459.590809] exit_to_user_mode_prepare+0x83/0xd0 [ 3459.590818] syscall_exit_to_user_mode+0x12/0x30 [ 3459.590828] do_syscall_64+0x48/0x90 [ 3459.590833] entry_SYSCALL_64_after_hwframe+0x44/0xae
CVE-2022-49293 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: initialize registers in nft_do_chain() Initialize registers to avoid stack leak into userspace.
CVE-2022-49306 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: dwc3: host: Stop setting the ACPI companion It is no longer needed. The sysdev pointer is now used when assigning the ACPI companions to the xHCI ports and USB devices. Assigning the ACPI companion here resulted in the fwnode->secondary pointer to be replaced also for the parent dwc3 device since the primary fwnode (the ACPI companion) was shared. That was unintentional and it created potential side effects like resource leaks.
CVE-2024-45844 1 F5 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more 2025-10-21 7.2 High
BIG-IP monitor functionality may allow an attacker to bypass access control restrictions, regardless of the port lockdown settings.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2025-0401 1 1902756969 1 Reggie 2025-10-21 5.3 Medium
A vulnerability classified as critical has been found in 1902756969 reggie 1.0. Affected is the function download of the file src/main/java/com/itheima/reggie/controller/CommonController.java. The manipulation of the argument name leads to path traversal. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
CVE-2025-0402 1 1902756969 1 Reggie 2025-10-21 6.3 Medium
A vulnerability classified as critical was found in 1902756969 reggie 1.0. Affected by this vulnerability is the function upload of the file src/main/java/com/itheima/reggie/controller/CommonController.java. The manipulation of the argument file leads to unrestricted upload. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.