CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE
There is a WARN_ON_ONCE to catch an unlikely situation when
domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless
happens we must avoid using a NULL pointer. |
In the Linux kernel, the following vulnerability has been resolved:
vmxnet3: Fix packet corruption in vmxnet3_xdp_xmit_frame
Andrew and Nikolay reported connectivity issues with Cilium's service
load-balancing in case of vmxnet3.
If a BPF program for native XDP adds an encapsulation header such as
IPIP and transmits the packet out the same interface, then in case
of vmxnet3 a corrupted packet is being sent and subsequently dropped
on the path.
vmxnet3_xdp_xmit_frame() which is called e.g. via vmxnet3_run_xdp()
through vmxnet3_xdp_xmit_back() calculates an incorrect DMA address:
page = virt_to_page(xdpf->data);
tbi->dma_addr = page_pool_get_dma_addr(page) +
VMXNET3_XDP_HEADROOM;
dma_sync_single_for_device(&adapter->pdev->dev,
tbi->dma_addr, buf_size,
DMA_TO_DEVICE);
The above assumes a fixed offset (VMXNET3_XDP_HEADROOM), but the XDP
BPF program could have moved xdp->data. While the passed buf_size is
correct (xdpf->len), the dma_addr needs to have a dynamic offset which
can be calculated as xdpf->data - (void *)xdpf, that is, xdp->data -
xdp->data_hard_start. |
A flaw was found in the Linux kernel’s networking code. A use-after-free was found in the way the sch_sfb enqueue function used the socket buffer (SKB) cb field after the same SKB had been enqueued (and freed) into a child qdisc. This flaw allows a local, unprivileged user to crash the system, causing a denial of service. |
In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Check for xhci->interrupters being allocated in xhci_mem_clearup()
If xhci_mem_init() fails, it calls into xhci_mem_cleanup() to mop
up the damage. If it fails early enough, before xhci->interrupters
is allocated but after xhci->max_interrupters has been set, which
happens in most (all?) cases, things get uglier, as xhci_mem_cleanup()
unconditionally derefences xhci->interrupters. With prejudice.
Gate the interrupt freeing loop with a check on xhci->interrupters
being non-NULL.
Found while debugging a DMA allocation issue that led the XHCI driver
on this exact path. |
In the Linux kernel, the following vulnerability has been resolved:
of: module: add buffer overflow check in of_modalias()
In of_modalias(), if the buffer happens to be too small even for the 1st
snprintf() call, the len parameter will become negative and str parameter
(if not NULL initially) will point beyond the buffer's end. Add the buffer
overflow check after the 1st snprintf() call and fix such check after the
strlen() call (accounting for the terminating NUL char). |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: don't override retval if we already lost the skb
If we're redirecting the skb, and haven't called tcf_mirred_forward(),
yet, we need to tell the core to drop the skb by setting the retcode
to SHOT. If we have called tcf_mirred_forward(), however, the skb
is out of our hands and returning SHOT will lead to UaF.
Move the retval override to the error path which actually need it. |
An out-of-bounds memory write flaw was found in the Linux kernel’s Kid-friendly Wired Controller driver. This flaw allows a local user to crash or potentially escalate their privileges on the system. It is in bigben_probe of drivers/hid/hid-bigbenff.c. The reason is incorrect assumption - bigben devices all have inputs. However, malicious devices can break this assumption, leaking to out-of-bound write. |
In the Linux kernel, the following vulnerability has been resolved:
vt: prevent kernel-infoleak in con_font_get()
font.data may not initialize all memory spaces depending on the implementation
of vc->vc_sw->con_font_get. This may cause info-leak, so to prevent this, it
is safest to modify it to initialize the allocated memory space to 0, and it
generally does not affect the overall performance of the system. |
The Commvault Command Center Innovation Release allows an unauthenticated actor to upload ZIP files that represent install packages that, when expanded by the target server, are vulnerable to path traversal vulnerability that can result in Remote Code Execution via malicious JSP.
This issue affects Command Center Innovation Release: 11.38. |
In the Linux kernel before 6.6.7, an untrusted VMM can trigger int80 syscall handling at any given point. This is related to arch/x86/coco/tdx/tdx.c and arch/x86/mm/mem_encrypt_amd.c. |
A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix potential null-ptr-deref
Fix potential null-ptr-deref in hci_le_big_sync_established_evt(). |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Call kfree_skb() for dead unix_(sk)->oob_skb in GC.
syzbot reported a warning [0] in __unix_gc() with a repro, which
creates a socketpair and sends one socket's fd to itself using the
peer.
socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0
sendmsg(4, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\360", iov_len=1}],
msg_iovlen=1, msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET,
cmsg_type=SCM_RIGHTS, cmsg_data=[3]}],
msg_controllen=24, msg_flags=0}, MSG_OOB|MSG_PROBE|MSG_DONTWAIT|MSG_ZEROCOPY) = 1
This forms a self-cyclic reference that GC should finally untangle
but does not due to lack of MSG_OOB handling, resulting in memory
leak.
Recently, commit 11498715f266 ("af_unix: Remove io_uring code for
GC.") removed io_uring's dead code in GC and revealed the problem.
The code was executed at the final stage of GC and unconditionally
moved all GC candidates from gc_candidates to gc_inflight_list.
That papered over the reported problem by always making the following
WARN_ON_ONCE(!list_empty(&gc_candidates)) false.
The problem has been there since commit 2aab4b969002 ("af_unix: fix
struct pid leaks in OOB support") added full scm support for MSG_OOB
while fixing another bug.
To fix this problem, we must call kfree_skb() for unix_sk(sk)->oob_skb
if the socket still exists in gc_candidates after purging collected skb.
Then, we need to set NULL to oob_skb before calling kfree_skb() because
it calls last fput() and triggers unix_release_sock(), where we call
duplicate kfree_skb(u->oob_skb) if not NULL.
Note that the leaked socket remained being linked to a global list, so
kmemleak also could not detect it. We need to check /proc/net/protocol
to notice the unfreed socket.
[0]:
WARNING: CPU: 0 PID: 2863 at net/unix/garbage.c:345 __unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Modules linked in:
CPU: 0 PID: 2863 Comm: kworker/u4:11 Not tainted 6.8.0-rc1-syzkaller-00583-g1701940b1a02 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: events_unbound __unix_gc
RIP: 0010:__unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Code: 8b 5c 24 50 e9 86 f8 ff ff e8 f8 e4 22 f8 31 d2 48 c7 c6 30 6a 69 89 4c 89 ef e8 97 ef ff ff e9 80 f9 ff ff e8 dd e4 22 f8 90 <0f> 0b 90 e9 7b fd ff ff 48 89 df e8 5c e7 7c f8 e9 d3 f8 ff ff e8
RSP: 0018:ffffc9000b03fba0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffc9000b03fc10 RCX: ffffffff816c493e
RDX: ffff88802c02d940 RSI: ffffffff896982f3 RDI: ffffc9000b03fb30
RBP: ffffc9000b03fce0 R08: 0000000000000001 R09: fffff52001607f66
R10: 0000000000000003 R11: 0000000000000002 R12: dffffc0000000000
R13: ffffc9000b03fc10 R14: ffffc9000b03fc10 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005559c8677a60 CR3: 000000000d57a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
process_one_work+0x889/0x15e0 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x8b9/0x12a0 kernel/workqueue.c:2787
kthread+0x2c6/0x3b0 kernel/kthread.c:388
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free bug in cifs_debug_data_proc_show()
Skip SMB sessions that are being teared down
(e.g. @ses->ses_status == SES_EXITING) in cifs_debug_data_proc_show()
to avoid use-after-free in @ses.
This fixes the following GPF when reading from /proc/fs/cifs/DebugData
while mounting and umounting
[ 816.251274] general protection fault, probably for non-canonical
address 0x6b6b6b6b6b6b6d81: 0000 [#1] PREEMPT SMP NOPTI
...
[ 816.260138] Call Trace:
[ 816.260329] <TASK>
[ 816.260499] ? die_addr+0x36/0x90
[ 816.260762] ? exc_general_protection+0x1b3/0x410
[ 816.261126] ? asm_exc_general_protection+0x26/0x30
[ 816.261502] ? cifs_debug_tcon+0xbd/0x240 [cifs]
[ 816.261878] ? cifs_debug_tcon+0xab/0x240 [cifs]
[ 816.262249] cifs_debug_data_proc_show+0x516/0xdb0 [cifs]
[ 816.262689] ? seq_read_iter+0x379/0x470
[ 816.262995] seq_read_iter+0x118/0x470
[ 816.263291] proc_reg_read_iter+0x53/0x90
[ 816.263596] ? srso_alias_return_thunk+0x5/0x7f
[ 816.263945] vfs_read+0x201/0x350
[ 816.264211] ksys_read+0x75/0x100
[ 816.264472] do_syscall_64+0x3f/0x90
[ 816.264750] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 816.265135] RIP: 0033:0x7fd5e669d381 |
In the Linux kernel, the following vulnerability has been resolved:
md/raid1: properly indicate failure when ending a failed write request
This patch addresses a data corruption bug in raid1 arrays using bitmaps.
Without this fix, the bitmap bits for the failed I/O end up being cleared.
Since we are in the failure leg of raid1_end_write_request, the request
either needs to be retried (R1BIO_WriteError) or failed (R1BIO_Degraded). |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode leak on getattr error in __fh_to_dentry |
In the Linux kernel, the following vulnerability has been resolved:
mm: migrate: fix getting incorrect page mapping during page migration
When running stress-ng testing, we found below kernel crash after a few hours:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : dentry_name+0xd8/0x224
lr : pointer+0x22c/0x370
sp : ffff800025f134c0
......
Call trace:
dentry_name+0xd8/0x224
pointer+0x22c/0x370
vsnprintf+0x1ec/0x730
vscnprintf+0x2c/0x60
vprintk_store+0x70/0x234
vprintk_emit+0xe0/0x24c
vprintk_default+0x3c/0x44
vprintk_func+0x84/0x2d0
printk+0x64/0x88
__dump_page+0x52c/0x530
dump_page+0x14/0x20
set_migratetype_isolate+0x110/0x224
start_isolate_page_range+0xc4/0x20c
offline_pages+0x124/0x474
memory_block_offline+0x44/0xf4
memory_subsys_offline+0x3c/0x70
device_offline+0xf0/0x120
......
After analyzing the vmcore, I found this issue is caused by page migration.
The scenario is that, one thread is doing page migration, and we will use the
target page's ->mapping field to save 'anon_vma' pointer between page unmap and
page move, and now the target page is locked and refcount is 1.
Currently, there is another stress-ng thread performing memory hotplug,
attempting to offline the target page that is being migrated. It discovers that
the refcount of this target page is 1, preventing the offline operation, thus
proceeding to dump the page. However, page_mapping() of the target page may
return an incorrect file mapping to crash the system in dump_mapping(), since
the target page->mapping only saves 'anon_vma' pointer without setting
PAGE_MAPPING_ANON flag.
There are seveval ways to fix this issue:
(1) Setting the PAGE_MAPPING_ANON flag for target page's ->mapping when saving
'anon_vma', but this can confuse PageAnon() for PFN walkers, since the target
page has not built mappings yet.
(2) Getting the page lock to call page_mapping() in __dump_page() to avoid crashing
the system, however, there are still some PFN walkers that call page_mapping()
without holding the page lock, such as compaction.
(3) Using target page->private field to save the 'anon_vma' pointer and 2 bits
page state, just as page->mapping records an anonymous page, which can remove
the page_mapping() impact for PFN walkers and also seems a simple way.
So I choose option 3 to fix this issue, and this can also fix other potential
issues for PFN walkers, such as compaction. |
In the Linux kernel, the following vulnerability has been resolved:
HID: sony: Fix a potential memory leak in sony_probe()
If an error occurs after a successful usb_alloc_urb() call, usb_free_urb()
should be called. |
In the Linux kernel, the following vulnerability has been resolved:
powerpc/kasan: Fix addr error caused by page alignment
In kasan_init_region, when k_start is not page aligned, at the begin of
for loop, k_cur = k_start & PAGE_MASK is less than k_start, and then
`va = block + k_cur - k_start` is less than block, the addr va is invalid,
because the memory address space from va to block is not alloced by
memblock_alloc, which will not be reserved by memblock_reserve later, it
will be used by other places.
As a result, memory overwriting occurs.
for example:
int __init __weak kasan_init_region(void *start, size_t size)
{
[...]
/* if say block(dcd97000) k_start(feef7400) k_end(feeff3fe) */
block = memblock_alloc(k_end - k_start, PAGE_SIZE);
[...]
for (k_cur = k_start & PAGE_MASK; k_cur < k_end; k_cur += PAGE_SIZE) {
/* at the begin of for loop
* block(dcd97000) va(dcd96c00) k_cur(feef7000) k_start(feef7400)
* va(dcd96c00) is less than block(dcd97000), va is invalid
*/
void *va = block + k_cur - k_start;
[...]
}
[...]
}
Therefore, page alignment is performed on k_start before
memblock_alloc() to ensure the validity of the VA address. |
In the Linux kernel, the following vulnerability has been resolved:
usb: roles: fix NULL pointer issue when put module's reference
In current design, usb role class driver will get usb_role_switch parent's
module reference after the user get usb_role_switch device and put the
reference after the user put the usb_role_switch device. However, the
parent device of usb_role_switch may be removed before the user put the
usb_role_switch. If so, then, NULL pointer issue will be met when the user
put the parent module's reference.
This will save the module pointer in structure of usb_role_switch. Then,
we don't need to find module by iterating long relations. |