| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: Change to kvalloc() in eventlog/acpi.c
The following failure was reported on HPE ProLiant D320:
[ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0)
[ 10.848132][ T1] ------------[ cut here ]------------
[ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330
[ 10.862827][ T1] Modules linked in:
[ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375
[ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024
[ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330
[ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1
[ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246
[ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000
[ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0
The above transcript shows that ACPI pointed a 16 MiB buffer for the log
events because RSI maps to the 'order' parameter of __alloc_pages_noprof().
Address the bug by moving from devm_kmalloc() to devm_add_action() and
kvmalloc() and devm_add_action(). |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Remove dangling pointers
When an async control is written, we copy a pointer to the file handle
that started the operation. That pointer will be used when the device is
done. Which could be anytime in the future.
If the user closes that file descriptor, its structure will be freed,
and there will be one dangling pointer per pending async control, that
the driver will try to use.
Clean all the dangling pointers during release().
To avoid adding a performance penalty in the most common case (no async
operation), a counter has been introduced with some logic to make sure
that it is properly handled. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: handle a symlink read error correctly
Patch series "Convert ocfs2 to use folios".
Mark did a conversion of ocfs2 to use folios and sent it to me as a
giant patch for review ;-)
So I've redone it as individual patches, and credited Mark for the patches
where his code is substantially the same. It's not a bad way to do it;
his patch had some bugs and my patches had some bugs. Hopefully all our
bugs were different from each other. And hopefully Mark likes all the
changes I made to his code!
This patch (of 23):
If we can't read the buffer, be sure to unlock the page before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
OPP: add index check to assert to avoid buffer overflow in _read_freq()
Pass the freq index to the assert function to make sure
we do not read a freq out of the opp->rates[] table when called
from the indexed variants:
dev_pm_opp_find_freq_exact_indexed() or
dev_pm_opp_find_freq_ceil/floor_indexed().
Add a secondary parameter to the assert function, unused
for assert_single_clk() then add assert_clk_index() which
will check for the clock index when called from the _indexed()
find functions. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wcn36xx: fix channel survey memory allocation size
KASAN reported a memory allocation issue in wcn->chan_survey
due to incorrect size calculation.
This commit uses kcalloc to allocate memory for wcn->chan_survey,
ensuring proper initialization and preventing the use of uninitialized
values when there are no frames on the channel. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: don't allow 1 packet limit
The current implementation does not work correctly with a limit of
1. iproute2 actually checks for this and this patch adds the check in
kernel as well.
This fixes the following syzkaller reported crash:
UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6
index 65535 is out of range for type 'struct sfq_head[128]'
CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x125/0x19f lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:148 [inline]
__ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347
sfq_link net/sched/sch_sfq.c:210 [inline]
sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238
sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500
sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296
netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline]
dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362
__dev_close_many+0x214/0x350 net/core/dev.c:1468
dev_close_many+0x207/0x510 net/core/dev.c:1506
unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738
unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695
unregister_netdevice include/linux/netdevice.h:2893 [inline]
__tun_detach+0x6b6/0x1600 drivers/net/tun.c:689
tun_detach drivers/net/tun.c:705 [inline]
tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640
__fput+0x203/0x840 fs/file_table.c:280
task_work_run+0x129/0x1b0 kernel/task_work.c:185
exit_task_work include/linux/task_work.h:33 [inline]
do_exit+0x5ce/0x2200 kernel/exit.c:931
do_group_exit+0x144/0x310 kernel/exit.c:1046
__do_sys_exit_group kernel/exit.c:1057 [inline]
__se_sys_exit_group kernel/exit.c:1055 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055
do_syscall_64+0x6c/0xd0
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fe5e7b52479
Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f.
RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000
RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0
R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270
The crash can be also be reproduced with the following (with a tc
recompiled to allow for sfq limits of 1):
tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s
../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1
ifconfig dummy0 up
ping -I dummy0 -f -c2 -W0.1 8.8.8.8
sleep 1
Scenario that triggers the crash:
* the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1
* TBF dequeues: it peeks from SFQ which moves the packet to the
gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so
it schedules itself for later.
* the second packet is sent and TBF tries to queues it to SFQ. qdisc
qlen is now 2 and because the SFQ limit is 1 the packet is dropped
by SFQ. At this point qlen is 1, and all of the SFQ slots are empty,
however q->tail is not NULL.
At this point, assuming no more packets are queued, when sch_dequeue
runs again it will decrement the qlen for the current empty slot
causing an underflow and the subsequent out of bounds access. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hid-thrustmaster: Fix warning in thrustmaster_probe by adding endpoint check
syzbot has found a type mismatch between a USB pipe and the transfer
endpoint, which is triggered by the hid-thrustmaster driver[1].
There is a number of similar, already fixed issues [2].
In this case as in others, implementing check for endpoint type fixes the issue.
[1] https://syzkaller.appspot.com/bug?extid=040e8b3db6a96908d470
[2] https://syzkaller.appspot.com/bug?extid=348331f63b034f89b622 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: Fix assumption that Resolution Multipliers must be in Logical Collections
A report in 2019 by the syzbot fuzzer was found to be connected to two
errors in the HID core associated with Resolution Multipliers. One of
the errors was fixed by commit ea427a222d8b ("HID: core: Fix deadloop
in hid_apply_multiplier."), but the other has not been fixed.
This error arises because hid_apply_multipler() assumes that every
Resolution Multiplier control is contained in a Logical Collection,
i.e., there's no way the routine can ever set multiplier_collection to
NULL. This is in spite of the fact that the function starts with a
big comment saying:
* "The Resolution Multiplier control must be contained in the same
* Logical Collection as the control(s) to which it is to be applied.
...
* If no Logical Collection is
* defined, the Resolution Multiplier is associated with all
* controls in the report."
* HID Usage Table, v1.12, Section 4.3.1, p30
*
* Thus, search from the current collection upwards until we find a
* logical collection...
The comment and the code overlook the possibility that none of the
collections found may be a Logical Collection.
The fix is to set the multiplier_collection pointer to NULL if the
collection found isn't a Logical Collection. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Fix NULL pointer dereference on certain command aborts
If a command is queued to the final usable TRB of a ring segment, the
enqueue pointer is advanced to the subsequent link TRB and no further.
If the command is later aborted, when the abort completion is handled
the dequeue pointer is advanced to the first TRB of the next segment.
If no further commands are queued, xhci_handle_stopped_cmd_ring() sees
the ring pointers unequal and assumes that there is a pending command,
so it calls xhci_mod_cmd_timer() which crashes if cur_cmd was NULL.
Don't attempt timer setup if cur_cmd is NULL. The subsequent doorbell
ring likely is unnecessary too, but it's harmless. Leave it alone.
This is probably Bug 219532, but no confirmation has been received.
The issue has been independently reproduced and confirmed fixed using
a USB MCU programmed to NAK the Status stage of SET_ADDRESS forever.
Everything continued working normally after several prevented crashes. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix double free in error path
If the uvc_status_init() function fails to allocate the int_urb, it will
free the dev->status pointer but doesn't reset the pointer to NULL. This
results in the kfree() call in uvc_status_cleanup() trying to
double-free the memory. Fix it by resetting the dev->status pointer to
NULL after freeing it.
Reviewed by: Ricardo Ribalda <ribalda@chromium.org> |
| In the Linux kernel, the following vulnerability has been resolved:
pps: Fix a use-after-free
On a board running ntpd and gpsd, I'm seeing a consistent use-after-free
in sys_exit() from gpsd when rebooting:
pps pps1: removed
------------[ cut here ]------------
kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150
CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1
Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : kobject_put+0x120/0x150
lr : kobject_put+0x120/0x150
sp : ffffffc0803d3ae0
x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001
x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440
x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600
x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20
x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
kobject_put+0x120/0x150
cdev_put+0x20/0x3c
__fput+0x2c4/0x2d8
____fput+0x1c/0x38
task_work_run+0x70/0xfc
do_exit+0x2a0/0x924
do_group_exit+0x34/0x90
get_signal+0x7fc/0x8c0
do_signal+0x128/0x13b4
do_notify_resume+0xdc/0x160
el0_svc+0xd4/0xf8
el0t_64_sync_handler+0x140/0x14c
el0t_64_sync+0x190/0x194
---[ end trace 0000000000000000 ]---
...followed by more symptoms of corruption, with similar stacks:
refcount_t: underflow; use-after-free.
kernel BUG at lib/list_debug.c:62!
Kernel panic - not syncing: Oops - BUG: Fatal exception
This happens because pps_device_destruct() frees the pps_device with the
embedded cdev immediately after calling cdev_del(), but, as the comment
above cdev_del() notes, fops for previously opened cdevs are still
callable even after cdev_del() returns. I think this bug has always
been there: I can't explain why it suddenly started happening every time
I reboot this particular board.
In commit d953e0e837e6 ("pps: Fix a use-after free bug when
unregistering a source."), George Spelvin suggested removing the
embedded cdev. That seems like the simplest way to fix this, so I've
implemented his suggestion, using __register_chrdev() with pps_idr
becoming the source of truth for which minor corresponds to which
device.
But now that pps_idr defines userspace visibility instead of cdev_add(),
we need to be sure the pps->dev refcount can't reach zero while
userspace can still find it again. So, the idr_remove() call moves to
pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev.
pps_core: source serial1 got cdev (251:1)
<...>
pps pps1: removed
pps_core: unregistering pps1
pps_core: deallocating pps1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: Fix potential error pointer dereference in detach_pm()
The proble is on the first line:
if (jpeg->pd_dev[i] && !pm_runtime_suspended(jpeg->pd_dev[i]))
If jpeg->pd_dev[i] is an error pointer, then passing it to
pm_runtime_suspended() will lead to an Oops. The other conditions
check for both error pointers and NULL, but it would be more clear to
use the IS_ERR_OR_NULL() check for that. |
| In the Linux kernel, the following vulnerability has been resolved:
memcg: fix soft lockup in the OOM process
A soft lockup issue was found in the product with about 56,000 tasks were
in the OOM cgroup, it was traversing them when the soft lockup was
triggered.
watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066]
CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G
Hardware name: Huawei Cloud OpenStack Nova, BIOS
RIP: 0010:console_unlock+0x343/0x540
RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff
RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247
RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040
R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0
R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
vprintk_emit+0x193/0x280
printk+0x52/0x6e
dump_task+0x114/0x130
mem_cgroup_scan_tasks+0x76/0x100
dump_header+0x1fe/0x210
oom_kill_process+0xd1/0x100
out_of_memory+0x125/0x570
mem_cgroup_out_of_memory+0xb5/0xd0
try_charge+0x720/0x770
mem_cgroup_try_charge+0x86/0x180
mem_cgroup_try_charge_delay+0x1c/0x40
do_anonymous_page+0xb5/0x390
handle_mm_fault+0xc4/0x1f0
This is because thousands of processes are in the OOM cgroup, it takes a
long time to traverse all of them. As a result, this lead to soft lockup
in the OOM process.
To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks'
function per 1000 iterations. For global OOM, call
'touch_softlockup_watchdog' per 1000 iterations to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
rdma/cxgb4: Prevent potential integer overflow on 32bit
The "gl->tot_len" variable is controlled by the user. It comes from
process_responses(). On 32bit systems, the "gl->tot_len + sizeof(struct
cpl_pass_accept_req) + sizeof(struct rss_header)" addition could have an
integer wrapping bug. Use size_add() to prevent this. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: mm: Fix the out of bound issue of vmemmap address
In sparse vmemmap model, the virtual address of vmemmap is calculated as:
((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)).
And the struct page's va can be calculated with an offset:
(vmemmap + (pfn)).
However, when initializing struct pages, kernel actually starts from the
first page from the same section that phys_ram_base belongs to. If the
first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then
we get an va below VMEMMAP_START when calculating va for it's struct page.
For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the
first page in the same section is actually pfn 0x80000. During
init_unavailable_range(), we will initialize struct page for pfn 0x80000
with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is
below VMEMMAP_START as well as PCI_IO_END.
This commit fixes this bug by introducing a new variable
'vmemmap_start_pfn' which is aligned with memory section size and using
it to calculate vmemmap address instead of phys_ram_base. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Fix a null-ptr-deref in vidtv_mux_stop_thread
syzbot report a null-ptr-deref in vidtv_mux_stop_thread. [1]
If dvb->mux is not initialized successfully by vidtv_mux_init() in the
vidtv_start_streaming(), it will trigger null pointer dereference about mux
in vidtv_mux_stop_thread().
Adjust the timing of streaming initialization and check it before
stopping it.
[1]
KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f]
CPU: 0 UID: 0 PID: 5842 Comm: syz-executor248 Not tainted 6.13.0-rc4-syzkaller-00012-g9b2ffa6148b1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:vidtv_mux_stop_thread+0x26/0x80 drivers/media/test-drivers/vidtv/vidtv_mux.c:471
Code: 90 90 90 90 66 0f 1f 00 55 53 48 89 fb e8 82 2e c8 f9 48 8d bb 28 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 02 7e 3b 0f b6 ab 28 01 00 00 31 ff 89 ee e8
RSP: 0018:ffffc90003f2faa8 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff87cfb125
RDX: 0000000000000025 RSI: ffffffff87d120ce RDI: 0000000000000128
RBP: ffff888029b8d220 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000003 R12: ffff888029b8d188
R13: ffffffff8f590aa0 R14: ffffc9000581c5c8 R15: ffff888029a17710
FS: 00007f7eef5156c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7eef5e635c CR3: 0000000076ca6000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
vidtv_stop_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:209 [inline]
vidtv_stop_feed+0x151/0x250 drivers/media/test-drivers/vidtv/vidtv_bridge.c:252
dmx_section_feed_stop_filtering+0x90/0x160 drivers/media/dvb-core/dvb_demux.c:1000
dvb_dmxdev_feed_stop.isra.0+0x1ee/0x270 drivers/media/dvb-core/dmxdev.c:486
dvb_dmxdev_filter_stop+0x22a/0x3a0 drivers/media/dvb-core/dmxdev.c:559
dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline]
dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246
__fput+0x3f8/0xb60 fs/file_table.c:450
task_work_run+0x14e/0x250 kernel/task_work.c:239
get_signal+0x1d3/0x2610 kernel/signal.c:2790
arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop kernel/entry/common.c:111 [inline]
exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline]
__syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline]
syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218
do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| sqfs_search_dir in Das U-Boot before 2025.01-rc1 exhibits an off-by-one error and resultant heap memory corruption for squashfs directory listing because the path separator is not considered in a size calculation. |
| Integer overflows in memory allocation in Das U-Boot before 2025.01-rc1 occur for a crafted squashfs filesystem via sbrk, via request2size, or because ptrdiff_t is mishandled on x86_64. |
| A stack consumption issue in sqfs_size in Das U-Boot before 2025.01-rc1 occurs via a crafted squashfs filesystem with deep symlink nesting. |
| An integer overflow in ext4fs_read_symlink in Das U-Boot before 2025.01-rc1 occurs for zalloc (adding one to an le32 variable) via a crafted ext4 filesystem with an inode size of 0xffffffff, resulting in a malloc of zero and resultant memory overwrite. |