| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: qcom: msm: mark certain pins as invalid for interrupts
On some platforms, the UFS-reset pin has no interrupt logic in TLMM but
is nevertheless registered as a GPIO in the kernel. This enables the
user-space to trigger a BUG() in the pinctrl-msm driver by running, for
example: `gpiomon -c 0 113` on RB2.
The exact culprit is requesting pins whose intr_detection_width setting
is not 1 or 2 for interrupts. This hits a BUG() in
msm_gpio_irq_set_type(). Potentially crashing the kernel due to an
invalid request from user-space is not optimal, so let's go through the
pins and mark those that would fail the check as invalid for the irq chip
as we should not even register them as available irqs.
This function can be extended if we determine that there are more
corner-cases like this. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/sched: Increment job count before swapping tail spsc queue
A small race exists between spsc_queue_push and the run-job worker, in
which spsc_queue_push may return not-first while the run-job worker has
already idled due to the job count being zero. If this race occurs, job
scheduling stops, leading to hangs while waiting on the job’s DMA
fences.
Seal this race by incrementing the job count before appending to the
SPSC queue.
This race was observed on a drm-tip 6.16-rc1 build with the Xe driver in
an SVM test case. |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix oops due to non-existence of prealloc backlog struct
If an AF_RXRPC service socket is opened and bound, but calls are
preallocated, then rxrpc_alloc_incoming_call() will oops because the
rxrpc_backlog struct doesn't get allocated until the first preallocation is
made.
Fix this by returning NULL from rxrpc_alloc_incoming_call() if there is no
backlog struct. This will cause the incoming call to be aborted. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: zd1211rw: Fix potential NULL pointer dereference in zd_mac_tx_to_dev()
There is a potential NULL pointer dereference in zd_mac_tx_to_dev(). For
example, the following is possible:
T0 T1
zd_mac_tx_to_dev()
/* len == skb_queue_len(q) */
while (len > ZD_MAC_MAX_ACK_WAITERS) {
filter_ack()
spin_lock_irqsave(&q->lock, flags);
/* position == skb_queue_len(q) */
for (i=1; i<position; i++)
skb = __skb_dequeue(q)
if (mac->type == NL80211_IFTYPE_AP)
skb = __skb_dequeue(q);
spin_unlock_irqrestore(&q->lock, flags);
skb_dequeue() -> NULL
Since there is a small gap between checking skb queue length and skb being
unconditionally dequeued in zd_mac_tx_to_dev(), skb_dequeue() can return NULL.
Then the pointer is passed to zd_mac_tx_status() where it is dereferenced.
In order to avoid potential NULL pointer dereference due to situations like
above, check if skb is not NULL before passing it to zd_mac_tx_status().
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: prevent A-MSDU attacks in mesh networks
This patch is a mitigation to prevent the A-MSDU spoofing vulnerability
for mesh networks. The initial update to the IEEE 802.11 standard, in
response to the FragAttacks, missed this case (CVE-2025-27558). It can
be considered a variant of CVE-2020-24588 but for mesh networks.
This patch tries to detect if a standard MSDU was turned into an A-MSDU
by an adversary. This is done by parsing a received A-MSDU as a standard
MSDU, calculating the length of the Mesh Control header, and seeing if
the 6 bytes after this header equal the start of an rfc1042 header. If
equal, this is a strong indication of an ongoing attack attempt.
This defense was tested with mac80211_hwsim against a mesh network that
uses an empty Mesh Address Extension field, i.e., when four addresses
are used, and when using a 12-byte Mesh Address Extension field, i.e.,
when six addresses are used. Functionality of normal MSDUs and A-MSDUs
was also tested, and confirmed working, when using both an empty and
12-byte Mesh Address Extension field.
It was also tested with mac80211_hwsim that A-MSDU attacks in non-mesh
networks keep being detected and prevented.
Note that the vulnerability being patched, and the defense being
implemented, was also discussed in the following paper and in the
following IEEE 802.11 presentation:
https://papers.mathyvanhoef.com/wisec2025.pdf
https://mentor.ieee.org/802.11/dcn/25/11-25-0949-00-000m-a-msdu-mesh-spoof-protection.docx |
| In the Linux kernel, the following vulnerability has been resolved:
kasan: remove kasan_find_vm_area() to prevent possible deadlock
find_vm_area() couldn't be called in atomic_context. If find_vm_area() is
called to reports vm area information, kasan can trigger deadlock like:
CPU0 CPU1
vmalloc();
alloc_vmap_area();
spin_lock(&vn->busy.lock)
spin_lock_bh(&some_lock);
<interrupt occurs>
<in softirq>
spin_lock(&some_lock);
<access invalid address>
kasan_report();
print_report();
print_address_description();
kasan_find_vm_area();
find_vm_area();
spin_lock(&vn->busy.lock) // deadlock!
To prevent possible deadlock while kasan reports, remove kasan_find_vm_area(). |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix assertion when building free space tree
When building the free space tree with the block group tree feature
enabled, we can hit an assertion failure like this:
BTRFS info (device loop0 state M): rebuilding free space tree
assertion failed: ret == 0, in fs/btrfs/free-space-tree.c:1102
------------[ cut here ]------------
kernel BUG at fs/btrfs/free-space-tree.c:1102!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
Modules linked in:
CPU: 1 UID: 0 PID: 6592 Comm: syz-executor322 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
lr : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102
sp : ffff8000a4ce7600
x29: ffff8000a4ce76e0 x28: ffff0000c9bc6000 x27: ffff0000ddfff3d8
x26: ffff0000ddfff378 x25: dfff800000000000 x24: 0000000000000001
x23: ffff8000a4ce7660 x22: ffff70001499cecc x21: ffff0000e1d8c160
x20: ffff0000e1cb7800 x19: ffff0000e1d8c0b0 x18: 00000000ffffffff
x17: ffff800092f39000 x16: ffff80008ad27e48 x15: ffff700011e740c0
x14: 1ffff00011e740c0 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff700011e740c0 x10: 0000000000ff0100 x9 : 94ef24f55d2dbc00
x8 : 94ef24f55d2dbc00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff8000a4ce6f98 x4 : ffff80008f415ba0 x3 : ffff800080548ef0
x2 : 0000000000000000 x1 : 0000000100000000 x0 : 000000000000003e
Call trace:
populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 (P)
btrfs_rebuild_free_space_tree+0x14c/0x54c fs/btrfs/free-space-tree.c:1337
btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074
btrfs_remount_rw fs/btrfs/super.c:1319 [inline]
btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543
reconfigure_super+0x1d4/0x6f0 fs/super.c:1083
do_remount fs/namespace.c:3365 [inline]
path_mount+0xb34/0xde0 fs/namespace.c:4200
do_mount fs/namespace.c:4221 [inline]
__do_sys_mount fs/namespace.c:4432 [inline]
__se_sys_mount fs/namespace.c:4409 [inline]
__arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767
el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786
el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600
Code: f0047182 91178042 528089c3 9771d47b (d4210000)
---[ end trace 0000000000000000 ]---
This happens because we are processing an empty block group, which has
no extents allocated from it, there are no items for this block group,
including the block group item since block group items are stored in a
dedicated tree when using the block group tree feature. It also means
this is the block group with the highest start offset, so there are no
higher keys in the extent root, hence btrfs_search_slot_for_read()
returns 1 (no higher key found).
Fix this by asserting 'ret' is 0 only if the block group tree feature
is not enabled, in which case we should find a block group item for
the block group since it's stored in the extent root and block group
item keys are greater than extent item keys (the value for
BTRFS_BLOCK_GROUP_ITEM_KEY is 192 and for BTRFS_EXTENT_ITEM_KEY and
BTRFS_METADATA_ITEM_KEY the values are 168 and 169 respectively).
In case 'ret' is 1, we just need to add a record to the free space
tree which spans the whole block group, and we can achieve this by
making 'ret == 0' as the while loop's condition. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix oob access in cgroup local storage
Lonial reported that an out-of-bounds access in cgroup local storage
can be crafted via tail calls. Given two programs each utilizing a
cgroup local storage with a different value size, and one program
doing a tail call into the other. The verifier will validate each of
the indivial programs just fine. However, in the runtime context
the bpf_cg_run_ctx holds an bpf_prog_array_item which contains the
BPF program as well as any cgroup local storage flavor the program
uses. Helpers such as bpf_get_local_storage() pick this up from the
runtime context:
ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
storage = ctx->prog_item->cgroup_storage[stype];
if (stype == BPF_CGROUP_STORAGE_SHARED)
ptr = &READ_ONCE(storage->buf)->data[0];
else
ptr = this_cpu_ptr(storage->percpu_buf);
For the second program which was called from the originally attached
one, this means bpf_get_local_storage() will pick up the former
program's map, not its own. With mismatching sizes, this can result
in an unintended out-of-bounds access.
To fix this issue, we need to extend bpf_map_owner with an array of
storage_cookie[] to match on i) the exact maps from the original
program if the second program was using bpf_get_local_storage(), or
ii) allow the tail call combination if the second program was not
using any of the cgroup local storage maps. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: interface: fix use-after-free after changing collect_md xfrm interface
collect_md property on xfrm interfaces can only be set on device creation,
thus xfrmi_changelink() should fail when called on such interfaces.
The check to enforce this was done only in the case where the xi was
returned from xfrmi_locate() which doesn't look for the collect_md
interface, and thus the validation was never reached.
Calling changelink would thus errornously place the special interface xi
in the xfrmi_net->xfrmi hash, but since it also exists in the
xfrmi_net->collect_md_xfrmi pointer it would lead to a double free when
the net namespace was taken down [1].
Change the check to use the xi from netdev_priv which is available earlier
in the function to prevent changes in xfrm collect_md interfaces.
[1] resulting oops:
[ 8.516540] kernel BUG at net/core/dev.c:12029!
[ 8.516552] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[ 8.516559] CPU: 0 UID: 0 PID: 12 Comm: kworker/u80:0 Not tainted 6.15.0-virtme #5 PREEMPT(voluntary)
[ 8.516565] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 8.516569] Workqueue: netns cleanup_net
[ 8.516579] RIP: 0010:unregister_netdevice_many_notify+0x101/0xab0
[ 8.516590] Code: 90 0f 0b 90 48 8b b0 78 01 00 00 48 8b 90 80 01 00 00 48 89 56 08 48 89 32 4c 89 80 78 01 00 00 48 89 b8 80 01 00 00 eb ac 90 <0f> 0b 48 8b 45 00 4c 8d a0 88 fe ff ff 48 39 c5 74 5c 41 80 bc 24
[ 8.516593] RSP: 0018:ffffa93b8006bd30 EFLAGS: 00010206
[ 8.516598] RAX: ffff98fe4226e000 RBX: ffffa93b8006bd58 RCX: ffffa93b8006bc60
[ 8.516601] RDX: 0000000000000004 RSI: 0000000000000000 RDI: dead000000000122
[ 8.516603] RBP: ffffa93b8006bdd8 R08: dead000000000100 R09: ffff98fe4133c100
[ 8.516605] R10: 0000000000000000 R11: 00000000000003d2 R12: ffffa93b8006be00
[ 8.516608] R13: ffffffff96c1a510 R14: ffffffff96c1a510 R15: ffffa93b8006be00
[ 8.516615] FS: 0000000000000000(0000) GS:ffff98fee73b7000(0000) knlGS:0000000000000000
[ 8.516619] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8.516622] CR2: 00007fcd2abd0700 CR3: 000000003aa40000 CR4: 0000000000752ef0
[ 8.516625] PKRU: 55555554
[ 8.516627] Call Trace:
[ 8.516632] <TASK>
[ 8.516635] ? rtnl_is_locked+0x15/0x20
[ 8.516641] ? unregister_netdevice_queue+0x29/0xf0
[ 8.516650] ops_undo_list+0x1f2/0x220
[ 8.516659] cleanup_net+0x1ad/0x2e0
[ 8.516664] process_one_work+0x160/0x380
[ 8.516673] worker_thread+0x2aa/0x3c0
[ 8.516679] ? __pfx_worker_thread+0x10/0x10
[ 8.516686] kthread+0xfb/0x200
[ 8.516690] ? __pfx_kthread+0x10/0x10
[ 8.516693] ? __pfx_kthread+0x10/0x10
[ 8.516697] ret_from_fork+0x82/0xf0
[ 8.516705] ? __pfx_kthread+0x10/0x10
[ 8.516709] ret_from_fork_asm+0x1a/0x30
[ 8.516718] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
clone_private_mnt(): make sure that caller has CAP_SYS_ADMIN in the right userns
What we want is to verify there is that clone won't expose something
hidden by a mount we wouldn't be able to undo. "Wouldn't be able to undo"
may be a result of MNT_LOCKED on a child, but it may also come from
lacking admin rights in the userns of the namespace mount belongs to.
clone_private_mnt() checks the former, but not the latter.
There's a number of rather confusing CAP_SYS_ADMIN checks in various
userns during the mount, especially with the new mount API; they serve
different purposes and in case of clone_private_mnt() they usually,
but not always end up covering the missing check mentioned above. |
| In the Linux kernel, the following vulnerability has been resolved:
do_change_type(): refuse to operate on unmounted/not ours mounts
Ensure that propagation settings can only be changed for mounts located
in the caller's mount namespace. This change aligns permission checking
with the rest of mount(2). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: make fallback action and fallback decision atomic
Syzkaller reported the following splat:
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 __mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 check_fully_established net/mptcp/options.c:982 [inline]
WARNING: CPU: 1 PID: 7704 at net/mptcp/protocol.h:1223 mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Modules linked in:
CPU: 1 UID: 0 PID: 7704 Comm: syz.3.1419 Not tainted 6.16.0-rc3-gbd5ce2324dba #20 PREEMPT(voluntary)
Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:__mptcp_do_fallback net/mptcp/protocol.h:1223 [inline]
RIP: 0010:mptcp_do_fallback net/mptcp/protocol.h:1244 [inline]
RIP: 0010:check_fully_established net/mptcp/options.c:982 [inline]
RIP: 0010:mptcp_incoming_options+0x21a8/0x2510 net/mptcp/options.c:1153
Code: 24 18 e8 bb 2a 00 fd e9 1b df ff ff e8 b1 21 0f 00 e8 ec 5f c4 fc 44 0f b7 ac 24 b0 00 00 00 e9 54 f1 ff ff e8 d9 5f c4 fc 90 <0f> 0b 90 e9 b8 f4 ff ff e8 8b 2a 00 fd e9 8d e6 ff ff e8 81 2a 00
RSP: 0018:ffff8880a3f08448 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8880180a8000 RCX: ffffffff84afcf45
RDX: ffff888090223700 RSI: ffffffff84afdaa7 RDI: 0000000000000001
RBP: ffff888017955780 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8880180a8910 R14: ffff8880a3e9d058 R15: 0000000000000000
FS: 00005555791b8500(0000) GS:ffff88811c495000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000110c2800b7 CR3: 0000000058e44000 CR4: 0000000000350ef0
Call Trace:
<IRQ>
tcp_reset+0x26f/0x2b0 net/ipv4/tcp_input.c:4432
tcp_validate_incoming+0x1057/0x1b60 net/ipv4/tcp_input.c:5975
tcp_rcv_established+0x5b5/0x21f0 net/ipv4/tcp_input.c:6166
tcp_v4_do_rcv+0x5dc/0xa70 net/ipv4/tcp_ipv4.c:1925
tcp_v4_rcv+0x3473/0x44a0 net/ipv4/tcp_ipv4.c:2363
ip_protocol_deliver_rcu+0xba/0x480 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2f1/0x500 net/ipv4/ip_input.c:233
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_local_deliver+0x1be/0x560 net/ipv4/ip_input.c:254
dst_input include/net/dst.h:469 [inline]
ip_rcv_finish net/ipv4/ip_input.c:447 [inline]
NF_HOOK include/linux/netfilter.h:317 [inline]
NF_HOOK include/linux/netfilter.h:311 [inline]
ip_rcv+0x514/0x810 net/ipv4/ip_input.c:567
__netif_receive_skb_one_core+0x197/0x1e0 net/core/dev.c:5975
__netif_receive_skb+0x1f/0x120 net/core/dev.c:6088
process_backlog+0x301/0x1360 net/core/dev.c:6440
__napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7453
napi_poll net/core/dev.c:7517 [inline]
net_rx_action+0xb44/0x1010 net/core/dev.c:7644
handle_softirqs+0x1d0/0x770 kernel/softirq.c:579
do_softirq+0x3f/0x90 kernel/softirq.c:480
</IRQ>
<TASK>
__local_bh_enable_ip+0xed/0x110 kernel/softirq.c:407
local_bh_enable include/linux/bottom_half.h:33 [inline]
inet_csk_listen_stop+0x2c5/0x1070 net/ipv4/inet_connection_sock.c:1524
mptcp_check_listen_stop.part.0+0x1cc/0x220 net/mptcp/protocol.c:2985
mptcp_check_listen_stop net/mptcp/mib.h:118 [inline]
__mptcp_close+0x9b9/0xbd0 net/mptcp/protocol.c:3000
mptcp_close+0x2f/0x140 net/mptcp/protocol.c:3066
inet_release+0xed/0x200 net/ipv4/af_inet.c:435
inet6_release+0x4f/0x70 net/ipv6/af_inet6.c:487
__sock_release+0xb3/0x270 net/socket.c:649
sock_close+0x1c/0x30 net/socket.c:1439
__fput+0x402/0xb70 fs/file_table.c:465
task_work_run+0x150/0x240 kernel/task_work.c:227
resume_user_mode_work include/linux/resume_user_mode.h:50 [inline]
exit_to_user_mode_loop+0xd4
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in crypt_message when using async crypto
The CVE-2024-50047 fix removed asynchronous crypto handling from
crypt_message(), assuming all crypto operations are synchronous.
However, when hardware crypto accelerators are used, this can cause
use-after-free crashes:
crypt_message()
// Allocate the creq buffer containing the req
creq = smb2_get_aead_req(..., &req);
// Async encryption returns -EINPROGRESS immediately
rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
// Free creq while async operation is still in progress
kvfree_sensitive(creq, ...);
Hardware crypto modules often implement async AEAD operations for
performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS,
the operation completes asynchronously. Without crypto_wait_req(),
the function immediately frees the request buffer, leading to crashes
when the driver later accesses the freed memory.
This results in a use-after-free condition when the hardware crypto
driver later accesses the freed request structure, leading to kernel
crashes with NULL pointer dereferences.
The issue occurs because crypto_alloc_aead() with mask=0 doesn't
guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in
the mask, async implementations can be selected.
Fix by restoring the async crypto handling:
- DECLARE_CRYPTO_WAIT(wait) for completion tracking
- aead_request_set_callback() for async completion notification
- crypto_wait_req() to wait for operation completion
This ensures the request buffer isn't freed until the crypto operation
completes, whether synchronous or asynchronous, while preserving the
CVE-2024-50047 fix. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: lpc-snoop: Don't disable channels that aren't enabled
Mitigate e.g. the following:
# echo 1e789080.lpc-snoop > /sys/bus/platform/drivers/aspeed-lpc-snoop/unbind
...
[ 120.363594] Unable to handle kernel NULL pointer dereference at virtual address 00000004 when write
[ 120.373866] [00000004] *pgd=00000000
[ 120.377910] Internal error: Oops: 805 [#1] SMP ARM
[ 120.383306] CPU: 1 UID: 0 PID: 315 Comm: sh Not tainted 6.15.0-rc1-00009-g926217bc7d7d-dirty #20 NONE
...
[ 120.679543] Call trace:
[ 120.679559] misc_deregister from aspeed_lpc_snoop_remove+0x84/0xac
[ 120.692462] aspeed_lpc_snoop_remove from platform_remove+0x28/0x38
[ 120.700996] platform_remove from device_release_driver_internal+0x188/0x200
... |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: fxls8962af: Fix use after free in fxls8962af_fifo_flush
fxls8962af_fifo_flush() uses indio_dev->active_scan_mask (with
iio_for_each_active_channel()) without making sure the indio_dev
stays in buffer mode.
There is a race if indio_dev exits buffer mode in the middle of the
interrupt that flushes the fifo. Fix this by calling
synchronize_irq() to ensure that no interrupt is currently running when
disabling buffer mode.
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
[...]
_find_first_bit_le from fxls8962af_fifo_flush+0x17c/0x290
fxls8962af_fifo_flush from fxls8962af_interrupt+0x80/0x178
fxls8962af_interrupt from irq_thread_fn+0x1c/0x7c
irq_thread_fn from irq_thread+0x110/0x1f4
irq_thread from kthread+0xe0/0xfc
kthread from ret_from_fork+0x14/0x2c |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |