| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bridge: switchdev: Fix memory leaks when changing VLAN protocol
The bridge driver can offload VLANs to the underlying hardware either
via switchdev or the 8021q driver. When the former is used, the VLAN is
marked in the bridge driver with the 'BR_VLFLAG_ADDED_BY_SWITCHDEV'
private flag.
To avoid the memory leaks mentioned in the cited commit, the bridge
driver will try to delete a VLAN via the 8021q driver if the VLAN is not
marked with the previously mentioned flag.
When the VLAN protocol of the bridge changes, switchdev drivers are
notified via the 'SWITCHDEV_ATTR_ID_BRIDGE_VLAN_PROTOCOL' attribute, but
the 8021q driver is also called to add the existing VLANs with the new
protocol and delete them with the old protocol.
In case the VLANs were offloaded via switchdev, the above behavior is
both redundant and buggy. Redundant because the VLANs are already
programmed in hardware and drivers that support VLAN protocol change
(currently only mlx5) change the protocol upon the switchdev attribute
notification. Buggy because the 8021q driver is called despite these
VLANs being marked with 'BR_VLFLAG_ADDED_BY_SWITCHDEV'. This leads to
memory leaks [1] when the VLANs are deleted.
Fix by not calling the 8021q driver for VLANs that were already
programmed via switchdev.
[1]
unreferenced object 0xffff8881f6771200 (size 256):
comm "ip", pid 446855, jiffies 4298238841 (age 55.240s)
hex dump (first 32 bytes):
00 00 7f 0e 83 88 ff ff 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000012819ac>] vlan_vid_add+0x437/0x750
[<00000000f2281fad>] __br_vlan_set_proto+0x289/0x920
[<000000000632b56f>] br_changelink+0x3d6/0x13f0
[<0000000089d25f04>] __rtnl_newlink+0x8ae/0x14c0
[<00000000f6276baf>] rtnl_newlink+0x5f/0x90
[<00000000746dc902>] rtnetlink_rcv_msg+0x336/0xa00
[<000000001c2241c0>] netlink_rcv_skb+0x11d/0x340
[<0000000010588814>] netlink_unicast+0x438/0x710
[<00000000e1a4cd5c>] netlink_sendmsg+0x788/0xc40
[<00000000e8992d4e>] sock_sendmsg+0xb0/0xe0
[<00000000621b8f91>] ____sys_sendmsg+0x4ff/0x6d0
[<000000000ea26996>] ___sys_sendmsg+0x12e/0x1b0
[<00000000684f7e25>] __sys_sendmsg+0xab/0x130
[<000000004538b104>] do_syscall_64+0x3d/0x90
[<0000000091ed9678>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: ena: Fix error handling in ena_init()
The ena_init() won't destroy workqueue created by
create_singlethread_workqueue() when pci_register_driver() failed.
Call destroy_workqueue() when pci_register_driver() failed to prevent the
resource leak. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: close race conditions on sk_receive_queue
sk->sk_receive_queue is protected by skb queue lock, but for KCM
sockets its RX path takes mux->rx_lock to protect more than just
skb queue. However, kcm_recvmsg() still only grabs the skb queue
lock, so race conditions still exist.
We can teach kcm_recvmsg() to grab mux->rx_lock too but this would
introduce a potential performance regression as struct kcm_mux can
be shared by multiple KCM sockets.
So we have to enforce skb queue lock in requeue_rx_msgs() and handle
skb peek case carefully in kcm_wait_data(). Fortunately,
skb_recv_datagram() already handles it nicely and is widely used by
other sockets, we can just switch to skb_recv_datagram() after
getting rid of the unnecessary sock lock in kcm_recvmsg() and
kcm_splice_read(). Side note: SOCK_DONE is not used by KCM sockets,
so it is safe to get rid of this check too.
I ran the original syzbot reproducer for 30 min without seeing any
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix missing xas_retry() in fscache mode
The xarray iteration only holds the RCU read lock and thus may encounter
XA_RETRY_ENTRY if there's process modifying the xarray concurrently.
This will cause oops when referring to the invalid entry.
Fix this by adding the missing xas_retry(), which will make the
iteration wind back to the root node if XA_RETRY_ENTRY is encountered. |
| A flaw was found in Keycloak. The Keycloak guides recommend to not expose /admin path to the outside in case the installation is using a proxy. The issue occurs at least via ha-proxy, as it can be tricked to using relative/non-normalized paths to access the /admin application path relative to /realms which is expected to be exposed. |
| A vulnerability was found in Undertow. This issue requires enabling the learning-push handler in the server's config, which is disabled by default, leaving the maxAge config in the handler unconfigured. The default is -1, which makes the handler vulnerable. If someone overwrites that config, the server is not subject to the attack. The attacker needs to be able to reach the server with a normal HTTP request. |
| In the Linux kernel, the following vulnerability has been resolved:
net: mhi: Fix memory leak in mhi_net_dellink()
MHI driver registers network device without setting the
needs_free_netdev flag, and does NOT call free_netdev() when
unregisters network device, which causes a memory leak.
This patch calls free_netdev() to fix it since netdev_priv
is used after unregister. |
| /etc/avahi/services/z9.service can be Arbitrarily Written.This issue affects BLU-IC2: through 1.19.5; BLU-IC4: through 1.19.5. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/mm: fix incorrect file_map_count for non-leaf pmd/pud
The page table check trigger BUG_ON() unexpectedly when collapse hugepage:
------------[ cut here ]------------
kernel BUG at mm/page_table_check.c:82!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
Dumping ftrace buffer:
(ftrace buffer empty)
Modules linked in:
CPU: 6 PID: 68 Comm: khugepaged Not tainted 6.1.0-rc3+ #750
Hardware name: linux,dummy-virt (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : page_table_check_clear.isra.0+0x258/0x3f0
lr : page_table_check_clear.isra.0+0x240/0x3f0
[...]
Call trace:
page_table_check_clear.isra.0+0x258/0x3f0
__page_table_check_pmd_clear+0xbc/0x108
pmdp_collapse_flush+0xb0/0x160
collapse_huge_page+0xa08/0x1080
hpage_collapse_scan_pmd+0xf30/0x1590
khugepaged_scan_mm_slot.constprop.0+0x52c/0xac8
khugepaged+0x338/0x518
kthread+0x278/0x2f8
ret_from_fork+0x10/0x20
[...]
Since pmd_user_accessible_page() doesn't check if a pmd is leaf, it
decrease file_map_count for a non-leaf pmd comes from collapse_huge_page().
and so trigger BUG_ON() unexpectedly.
Fix this problem by using pmd_leaf() insteal of pmd_present() in
pmd_user_accessible_page(). Moreover, use pud_leaf() for
pud_user_accessible_page() too. |
| A flaw was found in the Wildfly Server Role Based Access Control (RBAC) provider. When authorization to control management operations is secured using the Role Based Access Control provider, a user without the required privileges can suspend or resume the server. A user with a Monitor or Auditor role is supposed to have only read access permissions and should not be able to suspend the server.
The vulnerability is caused by the Suspend and Resume handlers not performing authorization checks to validate whether the current user has the required permissions to proceed with the action. |
| A flaw was found in libxml2's xmlBuildQName function, where integer overflows in buffer size calculations can lead to a stack-based buffer overflow. This issue can result in memory corruption or a denial of service when processing crafted input. |
| A stack overflow vulnerability exists in the libexpat library due to the way it handles recursive entity expansion in XML documents. When parsing an XML document with deeply nested entity references, libexpat can be forced to recurse indefinitely, exhausting the stack space and causing a crash. This issue could lead to denial of service (DoS) or, in some cases, exploitable memory corruption, depending on the environment and library usage. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: i8042 - fix leaking of platform device on module removal
Avoid resetting the module-wide i8042_platform_device pointer in
i8042_probe() or i8042_remove(), so that the device can be properly
destroyed by i8042_exit() on module unload. |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: enforce a consistent minimal mtu
macvlan should enforce a minimal mtu of 68, even at link creation.
This patch avoids the current behavior (which could lead to crashes
in ipv6 stack if the link is brought up)
$ ip link add macvlan1 link eno1 mtu 8 type macvlan # This should fail !
$ ip link sh dev macvlan1
5: macvlan1@eno1: <BROADCAST,MULTICAST> mtu 8 qdisc noop
state DOWN mode DEFAULT group default qlen 1000
link/ether 02:47:6c:24:74:82 brd ff:ff:ff:ff:ff:ff
$ ip link set macvlan1 mtu 67
Error: mtu less than device minimum.
$ ip link set macvlan1 mtu 68
$ ip link set macvlan1 mtu 8
Error: mtu less than device minimum. |
| /etc/timezone can be Arbitrarily Written.This issue affects BLU-IC2: through 1.19.5; BLU-IC4: through 1.19.5. |
| A vulnerability in Nuxt DevTools has been fixed in version **2.6.4***. This issue may have allowed Nuxt auth token extraction via XSS under certain configurations. All users are encouraged to upgrade.
More details: https://vercel.com/changelog/cve-2025-52662-xss-on-nuxt-devtools |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: cdg: allow tcp_cdg_release() to be called multiple times
Apparently, mptcp is able to call tcp_disconnect() on an already
disconnected flow. This is generally fine, unless current congestion
control is CDG, because it might trigger a double-free [1]
Instead of fixing MPTCP, and future bugs, we can make tcp_disconnect()
more resilient.
[1]
BUG: KASAN: double-free in slab_free mm/slub.c:3539 [inline]
BUG: KASAN: double-free in kfree+0xe2/0x580 mm/slub.c:4567
CPU: 0 PID: 3645 Comm: kworker/0:7 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: events mptcp_worker
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
kasan_report_invalid_free+0x81/0x190 mm/kasan/report.c:462
____kasan_slab_free+0x18b/0x1c0 mm/kasan/common.c:356
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_disconnect+0x980/0x1e20 net/ipv4/tcp.c:3145
__mptcp_close_ssk+0x5ca/0x7e0 net/mptcp/protocol.c:2327
mptcp_do_fastclose net/mptcp/protocol.c:2592 [inline]
mptcp_worker+0x78c/0xff0 net/mptcp/protocol.c:2627
process_one_work+0x991/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
Allocated by task 3671:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:45 [inline]
set_alloc_info mm/kasan/common.c:437 [inline]
____kasan_kmalloc mm/kasan/common.c:516 [inline]
____kasan_kmalloc mm/kasan/common.c:475 [inline]
__kasan_kmalloc+0xa9/0xd0 mm/kasan/common.c:525
kmalloc_array include/linux/slab.h:640 [inline]
kcalloc include/linux/slab.h:671 [inline]
tcp_cdg_init+0x10d/0x170 net/ipv4/tcp_cdg.c:380
tcp_init_congestion_control+0xab/0x550 net/ipv4/tcp_cong.c:193
tcp_reinit_congestion_control net/ipv4/tcp_cong.c:217 [inline]
tcp_set_congestion_control+0x96c/0xaa0 net/ipv4/tcp_cong.c:391
do_tcp_setsockopt+0x505/0x2320 net/ipv4/tcp.c:3513
tcp_setsockopt+0xd4/0x100 net/ipv4/tcp.c:3801
mptcp_setsockopt+0x35f/0x2570 net/mptcp/sockopt.c:844
__sys_setsockopt+0x2d6/0x690 net/socket.c:2252
__do_sys_setsockopt net/socket.c:2263 [inline]
__se_sys_setsockopt net/socket.c:2260 [inline]
__x64_sys_setsockopt+0xba/0x150 net/socket.c:2260
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 16:
kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
kasan_set_track+0x21/0x30 mm/kasan/common.c:45
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370
____kasan_slab_free mm/kasan/common.c:367 [inline]
____kasan_slab_free+0x166/0x1c0 mm/kasan/common.c:329
kasan_slab_free include/linux/kasan.h:200 [inline]
slab_free_hook mm/slub.c:1759 [inline]
slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785
slab_free mm/slub.c:3539 [inline]
kfree+0xe2/0x580 mm/slub.c:4567
tcp_cleanup_congestion_control+0x70/0x120 net/ipv4/tcp_cong.c:226
tcp_v4_destroy_sock+0xdd/0x750 net/ipv4/tcp_ipv4.c:2254
tcp_v6_destroy_sock+0x11/0x20 net/ipv6/tcp_ipv6.c:1969
inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1157
tcp_done+0x23b/0x340 net/ipv4/tcp.c:4649
tcp_rcv_state_process+0x40e7/0x4990 net/ipv4/tcp_input.c:6624
tcp_v6_do_rcv+0x3fc/0x13c0 net/ipv6/tcp_ipv6.c:1525
tcp_v6_rcv+0x2e8e/0x3830 net/ipv6/tcp_ipv6.c:1759
ip6_protocol_deliver_rcu+0x2db/0x1950 net/ipv6/ip6_input.c:439
ip6_input_finish+0x14c/0x2c0 net/ipv6/ip6_input.c:484
NF_HOOK include/linux/netfilter.h:302 [inline]
NF_HOOK include/linux/netfilter.h:296 [inline]
ip6_input+0x9c/0xd
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/xen: Fix eventfd error handling in kvm_xen_eventfd_assign()
Should not call eventfd_ctx_put() in case of error.
[Introduce new goto target instead. - Paolo] |
| A flaw was found in org.keycloak/keycloak-model-storage-service. The KeycloakRealmImport custom resource substitutes placeholders within imported realm documents, potentially referencing environment variables. This substitution process
allows for injection attacks when crafted realm documents are processed. An attacker can leverage this to inject malicious content during the realm import procedure. This can lead to unintended consequences within the Keycloak environment. |
| A vulnerability was found in libxml2. Processing certain sch:name elements from the input XML file can trigger a memory corruption issue. This flaw allows an attacker to craft a malicious XML input file that can lead libxml to crash, resulting in a denial of service or other possible undefined behavior due to sensitive data being corrupted in memory. |