| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix MSDU buffer types handling in RX error path
Currently, packets received on the REO exception ring from
unassociated peers are of MSDU buffer type, while the driver expects
link descriptor type packets. These packets are not parsed further due
to a return check on packet type in ath12k_hal_desc_reo_parse_err(),
but the associated skb is not freed. This may lead to kernel
crashes and buffer leaks.
Hence to fix, update the RX error handler to explicitly drop
MSDU buffer type packets received on the REO exception ring.
This prevents further processing of invalid packets and ensures
stability in the RX error handling path.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix page fault in ivpu_bo_unbind_all_bos_from_context()
Don't add BO to the vdev->bo_list in ivpu_gem_create_object().
When failure happens inside drm_gem_shmem_create(), the BO is not
fully created and ivpu_gem_bo_free() callback will not be called
causing a deleted BO to be left on the list. |
| In the Linux kernel, the following vulnerability has been resolved:
smack: fix bug: unprivileged task can create labels
If an unprivileged task is allowed to relabel itself
(/smack/relabel-self is not empty),
it can freely create new labels by writing their
names into own /proc/PID/attr/smack/current
This occurs because do_setattr() imports
the provided label in advance,
before checking "relabel-self" list.
This change ensures that the "relabel-self" list
is checked before importing the label. |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: hfcsusb: fix memory leak in hfcsusb_probe()
In hfcsusb_probe(), the memory allocated for ctrl_urb gets leaked when
setup_instance() fails with an error code. Fix that by freeing the urb
before freeing the hw structure. Also change the error paths to use the
goto ladder style.
Compile tested only. Issue found using a prototype static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: limit the level of fs stacking for file-backed mounts
Otherwise, it could cause potential kernel stack overflow (e.g., EROFS
mounting itself). |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: relax BUG() to ocfs2_error() in __ocfs2_move_extent()
In '__ocfs2_move_extent()', relax 'BUG()' to 'ocfs2_error()' just
to avoid crashing the whole kernel due to a filesystem corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Initialize allocated memory before use
KMSAN reports: Multiple uninitialized values detected:
- KMSAN: uninit-value in ntfs_read_hdr (3)
- KMSAN: uninit-value in bcmp (3)
Memory is allocated by __getname(), which is a wrapper for
kmem_cache_alloc(). This memory is used before being properly
cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to
properly allocate and clear memory before use. |
| In the Linux kernel, the following vulnerability has been resolved:
macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse
The following warning appears when running syzkaller, and this issue also
exists in the mainline code.
------------[ cut here ]------------
list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100.
WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130
Modules linked in:
CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__list_add_valid_or_report+0xf7/0x130
RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817
RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001
RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c
R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100
R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48
FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 80000000
Call Trace:
<TASK>
input_register_handler+0xb3/0x210
mac_hid_start_emulation+0x1c5/0x290
mac_hid_toggle_emumouse+0x20a/0x240
proc_sys_call_handler+0x4c2/0x6e0
new_sync_write+0x1b1/0x2d0
vfs_write+0x709/0x950
ksys_write+0x12a/0x250
do_syscall_64+0x5a/0x110
entry_SYSCALL_64_after_hwframe+0x78/0xe2
The WARNING occurs when two processes concurrently write to the mac-hid
emulation sysctl, causing a race condition in mac_hid_toggle_emumouse().
Both processes read old_val=0, then both try to register the input handler,
leading to a double list_add of the same handler.
CPU0 CPU1
------------------------- -------------------------
vfs_write() //write 1 vfs_write() //write 1
proc_sys_write() proc_sys_write()
mac_hid_toggle_emumouse() mac_hid_toggle_emumouse()
old_val = *valp // old_val=0
old_val = *valp // old_val=0
mutex_lock_killable()
proc_dointvec() // *valp=1
mac_hid_start_emulation()
input_register_handler()
mutex_unlock()
mutex_lock_killable()
proc_dointvec()
mac_hid_start_emulation()
input_register_handler() //Trigger Warning
mutex_unlock()
Fix this by moving the old_val read inside the mutex lock region. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: line6: fix stack overflow in line6_midi_transmit
Correctly calculate available space including the size of the chunk
buffer. This fixes a buffer overflow when multiple MIDI sysex
messages are sent to a PODxt device. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: fix memory leak in bnxt_nvm_test()
Free the kzalloc'ed buffer before returning in the success path. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Do not add the same hwpt to the ioas->hwpt_list twice
The hwpt is added to the hwpt_list only during its creation, it is never
added again. This hunk is some missed leftover from rework. Adding it
twice will corrupt the linked list in some cases.
It effects HWPT specific attachment, which is something the test suite
cannot cover until we can create a legitimate struct device with a
non-system iommu "driver" (ie we need the bus removed from the iommu code) |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: essiv - Handle EBUSY correctly
As it is essiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of essiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter
The 'acpiid' buffer in the parse_ivrs_acpihid function may overflow,
because the string specifier in the format string sscanf()
has no width limitation.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix peer HE MCS assignment
In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to
firmware as receive MCS while peer's receive MCS sent as transmit MCS,
which goes against firmwire's definition.
While connecting to a misbehaved AP that advertises 0xffff (meaning not
supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff
is assigned to he_mcs->rx_mcs_set field.
Ext Tag: HE Capabilities
[...]
Supported HE-MCS and NSS Set
[...]
Rx and Tx MCS Maps 160 MHz
[...]
Tx HE-MCS Map 160 MHz: 0xffff
Swap the assignment to fix this issue.
As the HE rate control mask is meant to limit our own transmit MCS, it
needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping
done, change is needed as well to apply it to the peer's receive MCS.
Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| Missing Authorization vulnerability in bnayawpguy Resoto allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Resoto: from n/a through 1.0.8. |
| Missing Authorization vulnerability in Jewel Theme Master Addons for Elementor allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Master Addons for Elementor: from n/a through 2.0.5.3. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: smscufx: Fix several use-after-free bugs
Several types of UAFs can occur when physically removing a USB device.
Adds ufx_ops_destroy() function to .fb_destroy of fb_ops, and
in this function, there is kref_put() that finally calls ufx_free().
This fix prevents multiple UAFs. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - fix DMA transfer direction
When CONFIG_DMA_API_DEBUG is selected, while running the crypto self
test on the QAT crypto algorithms, the function add_dma_entry() reports
a warning similar to the one below, saying that overlapping mappings
are not supported. This occurs in tests where the input and the output
scatter list point to the same buffers (i.e. two different scatter lists
which point to the same chunks of memory).
The logic that implements the mapping uses the flag DMA_BIDIRECTIONAL
for both the input and the output scatter lists which leads to
overlapped write mappings. These are not supported by the DMA layer.
Fix by specifying the correct DMA transfer directions when mapping
buffers. For in-place operations where the input scatter list
matches the output scatter list, buffers are mapped once with
DMA_BIDIRECTIONAL, otherwise input buffers are mapped using the flag
DMA_TO_DEVICE and output buffers are mapped with DMA_FROM_DEVICE.
Overlapping a read mapping with a write mapping is a valid case in
dma-coherent devices like QAT.
The function that frees and unmaps the buffers, qat_alg_free_bufl()
has been changed accordingly to the changes to the mapping function.
DMA-API: 4xxx 0000:06:00.0: cacheline tracking EEXIST, overlapping mappings aren't supported
WARNING: CPU: 53 PID: 4362 at kernel/dma/debug.c:570 add_dma_entry+0x1e9/0x270
...
Call Trace:
dma_map_page_attrs+0x82/0x2d0
? preempt_count_add+0x6a/0xa0
qat_alg_sgl_to_bufl+0x45b/0x990 [intel_qat]
qat_alg_aead_dec+0x71/0x250 [intel_qat]
crypto_aead_decrypt+0x3d/0x70
test_aead_vec_cfg+0x649/0x810
? number+0x310/0x3a0
? vsnprintf+0x2a3/0x550
? scnprintf+0x42/0x70
? valid_sg_divisions.constprop.0+0x86/0xa0
? test_aead_vec+0xdf/0x120
test_aead_vec+0xdf/0x120
alg_test_aead+0x185/0x400
alg_test+0x3d8/0x500
? crypto_acomp_scomp_free_ctx+0x30/0x30
? __schedule+0x32a/0x12a0
? ttwu_queue_wakelist+0xbf/0x110
? _raw_spin_unlock_irqrestore+0x23/0x40
? try_to_wake_up+0x83/0x570
? _raw_spin_unlock_irqrestore+0x23/0x40
? __set_cpus_allowed_ptr_locked+0xea/0x1b0
? crypto_acomp_scomp_free_ctx+0x30/0x30
cryptomgr_test+0x27/0x50
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
net: prevent skb corruption on frag list segmentation
Ian reported several skb corruptions triggered by rx-gro-list,
collecting different oops alike:
[ 62.624003] BUG: kernel NULL pointer dereference, address: 00000000000000c0
[ 62.631083] #PF: supervisor read access in kernel mode
[ 62.636312] #PF: error_code(0x0000) - not-present page
[ 62.641541] PGD 0 P4D 0
[ 62.644174] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 62.648629] CPU: 1 PID: 913 Comm: napi/eno2-79 Not tainted 6.4.0 #364
[ 62.655162] Hardware name: Supermicro Super Server/A2SDi-12C-HLN4F, BIOS 1.7a 10/13/2022
[ 62.663344] RIP: 0010:__udp_gso_segment (./include/linux/skbuff.h:2858
./include/linux/udp.h:23 net/ipv4/udp_offload.c:228 net/ipv4/udp_offload.c:261
net/ipv4/udp_offload.c:277)
[ 62.687193] RSP: 0018:ffffbd3a83b4f868 EFLAGS: 00010246
[ 62.692515] RAX: 00000000000000ce RBX: 0000000000000000 RCX: 0000000000000000
[ 62.699743] RDX: ffffa124def8a000 RSI: 0000000000000079 RDI: ffffa125952a14d4
[ 62.706970] RBP: ffffa124def8a000 R08: 0000000000000022 R09: 00002000001558c9
[ 62.714199] R10: 0000000000000000 R11: 00000000be554639 R12: 00000000000000e2
[ 62.721426] R13: ffffa125952a1400 R14: ffffa125952a1400 R15: 00002000001558c9
[ 62.728654] FS: 0000000000000000(0000) GS:ffffa127efa40000(0000)
knlGS:0000000000000000
[ 62.736852] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 62.742702] CR2: 00000000000000c0 CR3: 00000001034b0000 CR4: 00000000003526e0
[ 62.749948] Call Trace:
[ 62.752498] <TASK>
[ 62.779267] inet_gso_segment (net/ipv4/af_inet.c:1398)
[ 62.787605] skb_mac_gso_segment (net/core/gro.c:141)
[ 62.791906] __skb_gso_segment (net/core/dev.c:3403 (discriminator 2))
[ 62.800492] validate_xmit_skb (./include/linux/netdevice.h:4862
net/core/dev.c:3659)
[ 62.804695] validate_xmit_skb_list (net/core/dev.c:3710)
[ 62.809158] sch_direct_xmit (net/sched/sch_generic.c:330)
[ 62.813198] __dev_queue_xmit (net/core/dev.c:3805 net/core/dev.c:4210)
net/netfilter/core.c:626)
[ 62.821093] br_dev_queue_push_xmit (net/bridge/br_forward.c:55)
[ 62.825652] maybe_deliver (net/bridge/br_forward.c:193)
[ 62.829420] br_flood (net/bridge/br_forward.c:233)
[ 62.832758] br_handle_frame_finish (net/bridge/br_input.c:215)
[ 62.837403] br_handle_frame (net/bridge/br_input.c:298
net/bridge/br_input.c:416)
[ 62.851417] __netif_receive_skb_core.constprop.0 (net/core/dev.c:5387)
[ 62.866114] __netif_receive_skb_list_core (net/core/dev.c:5570)
[ 62.871367] netif_receive_skb_list_internal (net/core/dev.c:5638
net/core/dev.c:5727)
[ 62.876795] napi_complete_done (./include/linux/list.h:37
./include/net/gro.h:434 ./include/net/gro.h:429 net/core/dev.c:6067)
[ 62.881004] ixgbe_poll (drivers/net/ethernet/intel/ixgbe/ixgbe_main.c:3191)
[ 62.893534] __napi_poll (net/core/dev.c:6498)
[ 62.897133] napi_threaded_poll (./include/linux/netpoll.h:89
net/core/dev.c:6640)
[ 62.905276] kthread (kernel/kthread.c:379)
[ 62.913435] ret_from_fork (arch/x86/entry/entry_64.S:314)
[ 62.917119] </TASK>
In the critical scenario, rx-gro-list GRO-ed packets are fed, via a
bridge, both to the local input path and to an egress device (tun).
The segmentation of such packets unsafely writes to the cloned skbs
with shared heads.
This change addresses the issue by uncloning as needed the
to-be-segmented skbs. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gvt: fix gvt debugfs destroy
When gvt debug fs is destroyed, need to have a sane check if drm
minor's debugfs root is still available or not, otherwise in case like
device remove through unbinding, drm minor's debugfs directory has
already been removed, then intel_gvt_debugfs_clean() would act upon
dangling pointer like below oops.
i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2
i915 0000:00:02.0: MDEV: Registered
Console: switching to colour dummy device 80x25
i915 0000:00:02.0: MDEV: Unregistering
BUG: kernel NULL pointer dereference, address: 00000000000000a0
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15
Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020
RIP: 0010:down_write+0x1f/0x90
Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01
RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000
RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8
RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0
FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0
Call Trace:
<TASK>
simple_recursive_removal+0x9f/0x2a0
? start_creating.part.0+0x120/0x120
? _raw_spin_lock+0x13/0x40
debugfs_remove+0x40/0x60
intel_gvt_debugfs_clean+0x15/0x30 [kvmgt]
intel_gvt_clean_device+0x49/0xe0 [kvmgt]
intel_gvt_driver_remove+0x2f/0xb0
i915_driver_remove+0xa4/0xf0
i915_pci_remove+0x1a/0x30
pci_device_remove+0x33/0xa0
device_release_driver_internal+0x1b2/0x230
unbind_store+0xe0/0x110
kernfs_fop_write_iter+0x11b/0x1f0
vfs_write+0x203/0x3d0
ksys_write+0x63/0xe0
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f6947cb5190
Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89
RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190
RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001
RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0
</TASK>
Modules linked in: kvmgt
CR2: 00000000000000a0
---[ end trace 0000000000000000 ]--- |