Search Results (323568 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-13026 1 Mozilla 1 Firefox 2025-11-25 9.8 Critical
Sandbox escape due to incorrect boundary conditions in the Graphics: WebGPU component. This vulnerability affects Firefox < 145 and Thunderbird < 145.
CVE-2025-11460 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-11-25 8.8 High
Use after free in Storage in Google Chrome prior to 141.0.7390.65 allowed a remote attacker to execute arbitrary code via a crafted video file. (Chromium security severity: High)
CVE-2025-13017 1 Mozilla 2 Firefox, Firefox Esr 2025-11-25 8.1 High
Same-origin policy bypass in the DOM: Notifications component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5.
CVE-2025-11756 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-11-25 8.8 High
Use after free in Safe Browsing in Google Chrome prior to 141.0.7390.107 allowed a remote attacker who had compromised the renderer process to potentially perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High)
CVE-2025-13018 1 Mozilla 2 Firefox, Firefox Esr 2025-11-25 8.1 High
Mitigation bypass in the DOM: Security component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5.
CVE-2025-13019 1 Mozilla 2 Firefox, Firefox Esr 2025-11-25 8.1 High
Same-origin policy bypass in the DOM: Workers component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5.
CVE-2025-13020 1 Mozilla 2 Firefox, Firefox Esr 2025-11-25 8.8 High
Use-after-free in the WebRTC: Audio/Video component. This vulnerability affects Firefox < 145, Firefox ESR < 140.5, Thunderbird < 145, and Thunderbird < 140.5.
CVE-2025-13027 1 Mozilla 2 Firefox, Thunderbird 2025-11-25 8.1 High
Memory safety bugs present in Firefox 144 and Thunderbird 144. Some of these bugs showed evidence of memory corruption and we presume that with enough effort some of these could have been exploited to run arbitrary code. This vulnerability affects Firefox < 145 and Thunderbird < 145.
CVE-2025-12036 4 Apple, Google, Linux and 1 more 4 Macos, Chrome, Linux Kernel and 1 more 2025-11-25 8.8 High
Out of bounds memory access in V8 in Google Chrome prior to 141.0.7390.122 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High)
CVE-2025-39793 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/memmap: cast nr_pages to size_t before shifting If the allocated size exceeds UINT_MAX, then it's necessary to cast the mr->nr_pages value to size_t to prevent it from overflowing. In practice this isn't much of a concern as the required memory size will have been validated upfront, and accounted to the user. And > 4GB sizes will be necessary to make the lack of a cast a problem, which greatly exceeds normal user locked_vm settings that are generally in the kb to mb range. However, if root is used, then accounting isn't done, and then it's possible to hit this issue.
CVE-2022-50241 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: NFSD: fix use-after-free on source server when doing inter-server copy Use-after-free occurred when the laundromat tried to free expired cpntf_state entry on the s2s_cp_stateids list after inter-server copy completed. The sc_cp_list that the expired copy state was inserted on was already freed. When COPY completes, the Linux client normally sends LOCKU(lock_state x), FREE_STATEID(lock_state x) and CLOSE(open_state y) to the source server. The nfs4_put_stid call from nfsd4_free_stateid cleans up the copy state from the s2s_cp_stateids list before freeing the lock state's stid. However, sometimes the CLOSE was sent before the FREE_STATEID request. When this happens, the nfsd4_close_open_stateid call from nfsd4_close frees all lock states on its st_locks list without cleaning up the copy state on the sc_cp_list list. When the time the FREE_STATEID arrives the server returns BAD_STATEID since the lock state was freed. This causes the use-after-free error to occur when the laundromat tries to free the expired cpntf_state. This patch adds a call to nfs4_free_cpntf_statelist in nfsd4_close_open_stateid to clean up the copy state before calling free_ol_stateid_reaplist to free the lock state's stid on the reaplist.
CVE-2022-50248 1 Linux 1 Linux Kernel 2025-11-25 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: fix double free on tx path. We see kernel crashes and lockups and KASAN errors related to ax210 firmware crashes. One of the KASAN dumps pointed at the tx path, and it appears there is indeed a way to double-free an skb. If iwl_mvm_tx_skb_sta returns non-zero, then the 'skb' sent into the method will be freed. But, in case where we build TSO skb buffer, the skb may also be freed in error case. So, return 0 in that particular error case and do cleanup manually. BUG: KASAN: use-after-free in __list_del_entry_valid+0x12/0x90 iwlwifi 0000:06:00.0: 0x00000000 | tsf hi Read of size 8 at addr ffff88813cfa4ba0 by task btserver/9650 CPU: 4 PID: 9650 Comm: btserver Tainted: G W 5.19.8+ #5 iwlwifi 0000:06:00.0: 0x00000000 | time gp1 Hardware name: Default string Default string/SKYBAY, BIOS 5.12 02/19/2019 Call Trace: <TASK> dump_stack_lvl+0x55/0x6d print_report.cold.12+0xf2/0x684 iwlwifi 0000:06:00.0: 0x1D0915A8 | time gp2 ? __list_del_entry_valid+0x12/0x90 kasan_report+0x8b/0x180 iwlwifi 0000:06:00.0: 0x00000001 | uCode revision type ? __list_del_entry_valid+0x12/0x90 __list_del_entry_valid+0x12/0x90 iwlwifi 0000:06:00.0: 0x00000048 | uCode version major tcp_update_skb_after_send+0x5d/0x170 __tcp_transmit_skb+0xb61/0x15c0 iwlwifi 0000:06:00.0: 0xDAA05125 | uCode version minor ? __tcp_select_window+0x490/0x490 iwlwifi 0000:06:00.0: 0x00000420 | hw version ? trace_kmalloc_node+0x29/0xd0 ? __kmalloc_node_track_caller+0x12a/0x260 ? memset+0x1f/0x40 ? __build_skb_around+0x125/0x150 ? __alloc_skb+0x1d4/0x220 ? skb_zerocopy_clone+0x55/0x230 iwlwifi 0000:06:00.0: 0x00489002 | board version ? kmalloc_reserve+0x80/0x80 ? rcu_read_lock_bh_held+0x60/0xb0 tcp_write_xmit+0x3f1/0x24d0 iwlwifi 0000:06:00.0: 0x034E001C | hcmd ? __check_object_size+0x180/0x350 iwlwifi 0000:06:00.0: 0x24020000 | isr0 tcp_sendmsg_locked+0x8a9/0x1520 iwlwifi 0000:06:00.0: 0x01400000 | isr1 ? tcp_sendpage+0x50/0x50 iwlwifi 0000:06:00.0: 0x48F0000A | isr2 ? lock_release+0xb9/0x400 ? tcp_sendmsg+0x14/0x40 iwlwifi 0000:06:00.0: 0x00C3080C | isr3 ? lock_downgrade+0x390/0x390 ? do_raw_spin_lock+0x114/0x1d0 iwlwifi 0000:06:00.0: 0x00200000 | isr4 ? rwlock_bug.part.2+0x50/0x50 iwlwifi 0000:06:00.0: 0x034A001C | last cmd Id ? rwlock_bug.part.2+0x50/0x50 ? lockdep_hardirqs_on_prepare+0xe/0x200 iwlwifi 0000:06:00.0: 0x0000C2F0 | wait_event ? __local_bh_enable_ip+0x87/0xe0 ? inet_send_prepare+0x220/0x220 iwlwifi 0000:06:00.0: 0x000000C4 | l2p_control tcp_sendmsg+0x22/0x40 sock_sendmsg+0x5f/0x70 iwlwifi 0000:06:00.0: 0x00010034 | l2p_duration __sys_sendto+0x19d/0x250 iwlwifi 0000:06:00.0: 0x00000007 | l2p_mhvalid ? __ia32_sys_getpeername+0x40/0x40 iwlwifi 0000:06:00.0: 0x00000000 | l2p_addr_match ? rcu_read_lock_held_common+0x12/0x50 ? rcu_read_lock_sched_held+0x5a/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? rcu_read_lock_sched_held+0x5a/0xd0 ? rcu_read_lock_sched_held+0x5a/0xd0 ? lock_release+0xb9/0x400 ? lock_downgrade+0x390/0x390 ? ktime_get+0x64/0x130 ? ktime_get+0x8d/0x130 ? rcu_read_lock_held_common+0x12/0x50 ? rcu_read_lock_sched_held+0x5a/0xd0 ? rcu_read_lock_held_common+0x12/0x50 ? rcu_read_lock_sched_held+0x5a/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? rcu_read_lock_bh_held+0xb0/0xb0 __x64_sys_sendto+0x6f/0x80 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x46/0xb0 RIP: 0033:0x7f1d126e4531 Code: 00 00 00 00 0f 1f 44 00 00 f3 0f 1e fa 48 8d 05 35 80 0c 00 41 89 ca 8b 00 85 c0 75 1c 45 31 c9 45 31 c0 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 67 c3 66 0f 1f 44 00 00 55 48 83 ec 20 48 89 RSP: 002b:00007ffe21a679d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 000000000000ffdc RCX: 00007f1d126e4531 RDX: 0000000000010000 RSI: 000000000374acf0 RDI: 0000000000000014 RBP: 00007ffe21a67ac0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R ---truncated---
CVE-2022-50249 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: memory: of: Fix refcount leak bug in of_get_ddr_timings() We should add the of_node_put() when breaking out of for_each_child_of_node() as it will automatically increase and decrease the refcount.
CVE-2022-50250 1 Linux 1 Linux Kernel 2025-11-25 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix use_count leakage when handling boot-on I found a use_count leakage towards supply regulator of rdev with boot-on option. ┌───────────────────┐ ┌───────────────────┐ │ regulator_dev A │ │ regulator_dev B │ │ (boot-on) │ │ (boot-on) │ │ use_count=0 │◀──supply──│ use_count=1 │ │ │ │ │ └───────────────────┘ └───────────────────┘ In case of rdev(A) configured with `regulator-boot-on', the use_count of supplying regulator(B) will increment inside regulator_enable(rdev->supply). Thus, B will acts like always-on, and further balanced regulator_enable/disable cannot actually disable it anymore. However, B was also configured with `regulator-boot-on', we wish it could be disabled afterwards.
CVE-2025-64408 1 Apache 1 Causeway 2025-11-25 6.3 Medium
Apache Causeway faces Java deserialization vulnerabilities that allow remote code execution (RCE) through user-controllable URL parameters. These vulnerabilities affect all applications using Causeway's ViewModel functionality and can be exploited by authenticated attackers to execute arbitrary code with application privileges.  This issue affects all current versions. Users are recommended to upgrade to version 3.5.0, which fixes the issue.
CVE-2024-3342 2025-11-25 9.9 Critical
The Timetable and Event Schedule by MotoPress plugin for WordPress is vulnerable to SQL Injection via the 'events' attribute of the 'mp-timetable' shortcode in all versions up to, and including, 2.4.11 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2025-55303 2 Astro, Withastro 2 Astro, Astro 2025-11-25 6.1 Medium
Astro is a web framework for content-driven websites. In versions of astro before 5.13.2 and 4.16.18, the image optimization endpoint in projects deployed with on-demand rendering allows images from unauthorized third-party domains to be served. On-demand rendered sites built with Astro include an /_image endpoint which returns optimized versions of images. A bug in impacted versions of astro allows an attacker to bypass the third-party domain restrictions by using a protocol-relative URL as the image source, e.g. /_image?href=//example.com/image.png. This vulnerability is fixed in 5.13.2 and 4.16.18.
CVE-2024-8395 1 Flycass 1 Flycass 2025-11-25 9.8 Critical
FlyCASS CASS and KCM systems did not correctly filter SQL queries, which made them vulnerable to attack by outside attackers with no authentication.
CVE-2025-9085 2025-11-25 4.9 Medium
The User Registration & Membership plugin for WordPress is vulnerable to SQL Injection via the 's' parameter in version 4.3.0. This is due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with administrator-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
CVE-2025-7826 1 Wordpress 1 Wordpress 2025-11-25 6.5 Medium
The Testimonial plugin for WordPress is vulnerable to SQL Injection via the 'iNICtestimonial' shortcode in all versions up to, and including, 2.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.