Total
274769 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-10584 | 2024-12-24 | 5.4 Medium | ||
The DirectoryPress – Business Directory And Classified Ad Listing plugin for WordPress is vulnerable to Stored Cross-Site Scripting via SVG File uploads in all versions up to, and including, 3.6.16 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with author-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses the SVG file. When DirectoryPress Frontend is installed, this can be exploited by unauthenticated users. | ||||
CVE-2024-11726 | 2024-12-24 | 6.5 Medium | ||
The Appointment Booking Calendar Plugin and Scheduling Plugin – BookingPress plugin for WordPress is vulnerable to SQL Injection via the 'category' parameter of the 'bookingpress_form' shortcode in all versions up to, and including, 1.1.21 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Contributor-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. | ||||
CVE-2024-10856 | 2024-12-24 | 6.5 Medium | ||
The Booking Calendar WpDevArt plugin is vulnerable to time-based, blind SQL injection via the `id` parameter in the “wpdevart_booking_calendar” shortcode in versions up to, and including, 3.2.19 due to insufficient escaping on the user-supplied parameter and lack of sufficient preparation on the existing SQL query. The vulnerability requires the “delete_prev_date” theme option being enabled. This makes it possible for authenticated attackers, with contributor-level access or above, to append additional SQL queries into already existing query that can be used to extract sensitive information such as passwords from the database. | ||||
CVE-2021-46992 | 1 Linux | 1 Linux Kernel | 2024-12-24 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nftables: avoid overflows in nft_hash_buckets() Number of buckets being stored in 32bit variables, we have to ensure that no overflows occur in nft_hash_buckets() syzbot injected a size == 0x40000000 and reported: UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 1 PID: 29539 Comm: syz-executor.4 Not tainted 5.12.0-rc7-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 __roundup_pow_of_two include/linux/log2.h:57 [inline] nft_hash_buckets net/netfilter/nft_set_hash.c:411 [inline] nft_hash_estimate.cold+0x19/0x1e net/netfilter/nft_set_hash.c:652 nft_select_set_ops net/netfilter/nf_tables_api.c:3586 [inline] nf_tables_newset+0xe62/0x3110 net/netfilter/nf_tables_api.c:4322 nfnetlink_rcv_batch+0xa09/0x24b0 net/netfilter/nfnetlink.c:488 nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:612 [inline] nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:630 netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline] netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338 netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927 sock_sendmsg_nosec net/socket.c:654 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:674 ____sys_sendmsg+0x6e8/0x810 net/socket.c:2350 ___sys_sendmsg+0xf3/0x170 net/socket.c:2404 __sys_sendmsg+0xe5/0x1b0 net/socket.c:2433 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 | ||||
CVE-2024-9675 | 2 Buildah Project, Redhat | 21 Buildah, Enterprise Linux, Enterprise Linux Eus and 18 more | 2024-12-24 | 7.8 High |
A vulnerability was found in Buildah. Cache mounts do not properly validate that user-specified paths for the cache are within our cache directory, allowing a `RUN` instruction in a Container file to mount an arbitrary directory from the host (read/write) into the container as long as those files can be accessed by the user running Buildah. | ||||
CVE-2024-9671 | 1 Redhat | 2 3scale Api Management Platform, Red Hat 3scale Amp | 2024-12-24 | 5.3 Medium |
A vulnerability was found in 3Scale. There is no auth mechanism to see a PDF invoice of a Developer user if the URL is known. Anyone can see the invoice if the URL is known or guessed. | ||||
CVE-2024-9666 | 1 Redhat | 2 Build Keycloak, Jboss Enterprise Application Platform | 2024-12-24 | 4.7 Medium |
A vulnerability was found in the Keycloak Server. The Keycloak Server is vulnerable to a denial of service (DoS) attack due to improper handling of proxy headers. When Keycloak is configured to accept incoming proxy headers, it may accept non-IP values, such as obfuscated identifiers, without proper validation. This issue can lead to costly DNS resolution operations, which an attacker could exploit to tie up IO threads and potentially cause a denial of service. The attacker must have access to send requests to a Keycloak instance that is configured to accept proxy headers, specifically when reverse proxies do not overwrite incoming headers, and Keycloak is configured to trust these headers. | ||||
CVE-2024-3056 | 3 Fedoraproject, Podman Project, Redhat | 5 Fedora, Podman, Enterprise Linux and 2 more | 2024-12-24 | 7.7 High |
A flaw was found in Podman. This issue may allow an attacker to create a specially crafted container that, when configured to share the same IPC with at least one other container, can create a large number of IPC resources in /dev/shm. The malicious container will continue to exhaust resources until it is out-of-memory (OOM) killed. While the malicious container's cgroup will be removed, the IPC resources it created are not. Those resources are tied to the IPC namespace that will not be removed until all containers using it are stopped, and one non-malicious container is holding the namespace open. The malicious container is restarted, either automatically or by attacker control, repeating the process and increasing the amount of memory consumed. With a container configured to restart always, such as `podman run --restart=always`, this can result in a memory-based denial of service of the system. | ||||
CVE-2024-3049 | 2 Clusterlabs, Redhat | 11 Booth, Enterprise Linux, Enterprise Linux Eus and 8 more | 2024-12-24 | 5.9 Medium |
A flaw was found in Booth, a cluster ticket manager. If a specially-crafted hash is passed to gcry_md_get_algo_dlen(), it may allow an invalid HMAC to be accepted by the Booth server. | ||||
CVE-2024-2905 | 1 Redhat | 3 Enterprise Linux, Openshift, Rhel Eus | 2024-12-24 | 6.2 Medium |
A security vulnerability has been discovered within rpm-ostree, pertaining to the /etc/shadow file in default builds having the world-readable bit enabled. This issue arises from the default permissions being set at a higher level than recommended, potentially exposing sensitive authentication data to unauthorized access. | ||||
CVE-2024-2199 | 1 Redhat | 3 Directory Server, Enterprise Linux, Rhel Eus | 2024-12-24 | 5.7 Medium |
A denial of service vulnerability was found in 389-ds-base ldap server. This issue may allow an authenticated user to cause a server crash while modifying `userPassword` using malformed input. | ||||
CVE-2023-6717 | 1 Redhat | 15 Amq Broker, Build Keycloak, Jboss Data Grid and 12 more | 2024-12-24 | 6 Medium |
A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance. | ||||
CVE-2024-53163 | 2024-12-24 | 5.3 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: crypto: qat/qat_420xx - fix off by one in uof_get_name() This is called from uof_get_name_420xx() where "num_objs" is the ARRAY_SIZE() of fw_objs[]. The > needs to be >= to prevent an out of bounds access. | ||||
CVE-2024-53162 | 2024-12-24 | 5.3 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: crypto: qat/qat_4xxx - fix off by one in uof_get_name() The fw_objs[] array has "num_objs" elements so the > needs to be >= to prevent an out of bounds read. | ||||
CVE-2024-53161 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: EDAC/bluefield: Fix potential integer overflow The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as 32-bits wide the left-shift operation truncates the upper 16 bits of information during the calculation of the SMC argument. The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any potential integer overflow, i.e. loss of data from upper 16 bits. | ||||
CVE-2024-53160 | 2024-12-24 | 6.3 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: rcu/kvfree: Fix data-race in __mod_timer / kvfree_call_rcu KCSAN reports a data race when access the krcp->monitor_work.timer.expires variable in the schedule_delayed_monitor_work() function: <snip> BUG: KCSAN: data-race in __mod_timer / kvfree_call_rcu read to 0xffff888237d1cce8 of 8 bytes by task 10149 on cpu 1: schedule_delayed_monitor_work kernel/rcu/tree.c:3520 [inline] kvfree_call_rcu+0x3b8/0x510 kernel/rcu/tree.c:3839 trie_update_elem+0x47c/0x620 kernel/bpf/lpm_trie.c:441 bpf_map_update_value+0x324/0x350 kernel/bpf/syscall.c:203 generic_map_update_batch+0x401/0x520 kernel/bpf/syscall.c:1849 bpf_map_do_batch+0x28c/0x3f0 kernel/bpf/syscall.c:5143 __sys_bpf+0x2e5/0x7a0 __do_sys_bpf kernel/bpf/syscall.c:5741 [inline] __se_sys_bpf kernel/bpf/syscall.c:5739 [inline] __x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5739 x64_sys_call+0x2625/0x2d60 arch/x86/include/generated/asm/syscalls_64.h:322 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xc9/0x1c0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f write to 0xffff888237d1cce8 of 8 bytes by task 56 on cpu 0: __mod_timer+0x578/0x7f0 kernel/time/timer.c:1173 add_timer_global+0x51/0x70 kernel/time/timer.c:1330 __queue_delayed_work+0x127/0x1a0 kernel/workqueue.c:2523 queue_delayed_work_on+0xdf/0x190 kernel/workqueue.c:2552 queue_delayed_work include/linux/workqueue.h:677 [inline] schedule_delayed_monitor_work kernel/rcu/tree.c:3525 [inline] kfree_rcu_monitor+0x5e8/0x660 kernel/rcu/tree.c:3643 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0x483/0x9a0 kernel/workqueue.c:3310 worker_thread+0x51d/0x6f0 kernel/workqueue.c:3391 kthread+0x1d1/0x210 kernel/kthread.c:389 ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Reported by Kernel Concurrency Sanitizer on: CPU: 0 UID: 0 PID: 56 Comm: kworker/u8:4 Not tainted 6.12.0-rc2-syzkaller-00050-g5b7c893ed5ed #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: events_unbound kfree_rcu_monitor <snip> kfree_rcu_monitor() rearms the work if a "krcp" has to be still offloaded and this is done without holding krcp->lock, whereas the kvfree_call_rcu() holds it. Fix it by acquiring the "krcp->lock" for kfree_rcu_monitor() so both functions do not race anymore. | ||||
CVE-2024-53159 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775-core) Fix overflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtoul() results in an overflow if a large number such as 18446744073709551615 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations. | ||||
CVE-2024-53158 | 2024-12-24 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: geni-se: fix array underflow in geni_se_clk_tbl_get() This loop is supposed to break if the frequency returned from clk_round_rate() is the same as on the previous iteration. However, that check doesn't make sense on the first iteration through the loop. It leads to reading before the start of these->clk_perf_tbl[] array. | ||||
CVE-2024-53157 | 2024-12-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scpi: Check the DVFS OPP count returned by the firmware Fix a kernel crash with the below call trace when the SCPI firmware returns OPP count of zero. dvfs_info.opp_count may be zero on some platforms during the reboot test, and the kernel will crash after dereferencing the pointer to kcalloc(info->count, sizeof(*opp), GFP_KERNEL). | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000028 | Mem abort info: | ESR = 0x96000004 | Exception class = DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | Data abort info: | ISV = 0, ISS = 0x00000004 | CM = 0, WnR = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000faefa08c | [0000000000000028] pgd=0000000000000000 | Internal error: Oops: 96000004 [#1] SMP | scpi-hwmon: probe of PHYT000D:00 failed with error -110 | Process systemd-udevd (pid: 1701, stack limit = 0x00000000aaede86c) | CPU: 2 PID: 1701 Comm: systemd-udevd Not tainted 4.19.90+ #1 | Hardware name: PHYTIUM LTD Phytium FT2000/4/Phytium FT2000/4, BIOS | pstate: 60000005 (nZCv daif -PAN -UAO) | pc : scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | lr : clk_register+0x438/0x720 | Call trace: | scpi_dvfs_recalc_rate+0x40/0x58 [clk_scpi] | devm_clk_hw_register+0x50/0xa0 | scpi_clk_ops_init.isra.2+0xa0/0x138 [clk_scpi] | scpi_clocks_probe+0x528/0x70c [clk_scpi] | platform_drv_probe+0x58/0xa8 | really_probe+0x260/0x3d0 | driver_probe_device+0x12c/0x148 | device_driver_attach+0x74/0x98 | __driver_attach+0xb4/0xe8 | bus_for_each_dev+0x88/0xe0 | driver_attach+0x30/0x40 | bus_add_driver+0x178/0x2b0 | driver_register+0x64/0x118 | __platform_driver_register+0x54/0x60 | scpi_clocks_driver_init+0x24/0x1000 [clk_scpi] | do_one_initcall+0x54/0x220 | do_init_module+0x54/0x1c8 | load_module+0x14a4/0x1668 | __se_sys_finit_module+0xf8/0x110 | __arm64_sys_finit_module+0x24/0x30 | el0_svc_common+0x78/0x170 | el0_svc_handler+0x38/0x78 | el0_svc+0x8/0x340 | Code: 937d7c00 a94153f3 a8c27bfd f9400421 (b8606820) | ---[ end trace 06feb22469d89fa8 ]--- | Kernel panic - not syncing: Fatal exception | SMP: stopping secondary CPUs | Kernel Offset: disabled | CPU features: 0x10,a0002008 | Memory Limit: none | ||||
CVE-2024-53156 | 2024-12-24 | 7.1 High | ||
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: add range check for conn_rsp_epid in htc_connect_service() I found the following bug in my fuzzer: UBSAN: array-index-out-of-bounds in drivers/net/wireless/ath/ath9k/htc_hst.c:26:51 index 255 is out of range for type 'htc_endpoint [22]' CPU: 0 UID: 0 PID: 8 Comm: kworker/0:0 Not tainted 6.11.0-rc6-dirty #14 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: events request_firmware_work_func Call Trace: <TASK> dump_stack_lvl+0x180/0x1b0 __ubsan_handle_out_of_bounds+0xd4/0x130 htc_issue_send.constprop.0+0x20c/0x230 ? _raw_spin_unlock_irqrestore+0x3c/0x70 ath9k_wmi_cmd+0x41d/0x610 ? mark_held_locks+0x9f/0xe0 ... Since this bug has been confirmed to be caused by insufficient verification of conn_rsp_epid, I think it would be appropriate to add a range check for conn_rsp_epid to htc_connect_service() to prevent the bug from occurring. |