| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in linux-pam. The module pam_namespace may use access user-controlled paths without proper protection, allowing local users to elevate their privileges to root via multiple symlink attacks and race conditions. |
| An unauthenticated remote command execution vulnerability exists in Samsung WLAN AP WEA453e firmware prior to version 5.2.4.T1 via improper input validation in the “Tech Support” diagnostic functionality. The command1 and command2 POST or GET parameters accept arbitrary shell commands that are executed with root privileges on the underlying operating system. An attacker can exploit this by crafting a request that injects shell commands to create output files in writable directories and then access their contents via the download endpoint. This flaw allows complete compromise of the device without authentication. Exploitation evidence was observed by the Shadowserver Foundation on 2025-02-04 UTC. |
| A flaw was found in Undertow where malformed client requests can trigger server-side stream resets without triggering abuse counters. This issue, referred to as the "MadeYouReset" attack, allows malicious clients to induce excessive server workload by repeatedly causing server-side stream aborts. While not a protocol bug, this highlights a common implementation weakness that can be exploited to cause a denial of service (DoS). |
| Buffer over-read in Windows Routing and Remote Access Service (RRAS) allows an unauthorized attacker to disclose information over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Avoid crash due to unaligned access in unwinder
Guenter Roeck reported this kernel crash on his emulated B160L machine:
Starting network: udhcpc: started, v1.36.1
Backtrace:
[<104320d4>] unwind_once+0x1c/0x5c
[<10434a00>] walk_stackframe.isra.0+0x74/0xb8
[<10434a6c>] arch_stack_walk+0x28/0x38
[<104e5efc>] stack_trace_save+0x48/0x5c
[<105d1bdc>] set_track_prepare+0x44/0x6c
[<105d9c80>] ___slab_alloc+0xfc4/0x1024
[<105d9d38>] __slab_alloc.isra.0+0x58/0x90
[<105dc80c>] kmem_cache_alloc_noprof+0x2ac/0x4a0
[<105b8e54>] __anon_vma_prepare+0x60/0x280
[<105a823c>] __vmf_anon_prepare+0x68/0x94
[<105a8b34>] do_wp_page+0x8cc/0xf10
[<105aad88>] handle_mm_fault+0x6c0/0xf08
[<10425568>] do_page_fault+0x110/0x440
[<10427938>] handle_interruption+0x184/0x748
[<11178398>] schedule+0x4c/0x190
BUG: spinlock recursion on CPU#0, ifconfig/2420
lock: terminate_lock.2+0x0/0x1c, .magic: dead4ead, .owner: ifconfig/2420, .owner_cpu: 0
While creating the stack trace, the unwinder uses the stack pointer to guess
the previous frame to read the previous stack pointer from memory. The crash
happens, because the unwinder tries to read from unaligned memory and as such
triggers the unalignment trap handler which then leads to the spinlock
recursion and finally to a deadlock.
Fix it by checking the alignment before accessing the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: always add GFP_NOWARN for ATOMIC allocations
Driver authors often forget to add GFP_NOWARN for page allocation
from the datapath. This is annoying to users as OOMs are a fact
of life, and we pretty much expect network Rx to hit page allocation
failures during OOM. Make page pool add GFP_NOWARN for ATOMIC allocations
by default. |
| In the Linux kernel, the following vulnerability has been resolved:
lan966x: Fix sleeping in atomic context
The following warning was seen when we try to connect using ssh to the device.
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:575
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 104, name: dropbear
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
CPU: 0 UID: 0 PID: 104 Comm: dropbear Tainted: G W 6.18.0-rc2-00399-g6f1ab1b109b9-dirty #530 NONE
Tainted: [W]=WARN
Hardware name: Generic DT based system
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x7c/0xac
dump_stack_lvl from __might_resched+0x16c/0x2b0
__might_resched from __mutex_lock+0x64/0xd34
__mutex_lock from mutex_lock_nested+0x1c/0x24
mutex_lock_nested from lan966x_stats_get+0x5c/0x558
lan966x_stats_get from dev_get_stats+0x40/0x43c
dev_get_stats from dev_seq_printf_stats+0x3c/0x184
dev_seq_printf_stats from dev_seq_show+0x10/0x30
dev_seq_show from seq_read_iter+0x350/0x4ec
seq_read_iter from seq_read+0xfc/0x194
seq_read from proc_reg_read+0xac/0x100
proc_reg_read from vfs_read+0xb0/0x2b0
vfs_read from ksys_read+0x6c/0xec
ksys_read from ret_fast_syscall+0x0/0x1c
Exception stack(0xf0b11fa8 to 0xf0b11ff0)
1fa0: 00000001 00001000 00000008 be9048d8 00001000 00000001
1fc0: 00000001 00001000 00000008 00000003 be905920 0000001e 00000000 00000001
1fe0: 0005404c be9048c0 00018684 b6ec2cd8
It seems that we are using a mutex in a atomic context which is wrong.
Change the mutex with a spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
netconsole: Acquire su_mutex before navigating configs hierarchy
There is a race between operations that iterate over the userdata
cg_children list and concurrent add/remove of userdata items through
configfs. The update_userdata() function iterates over the
nt->userdata_group.cg_children list, and count_extradata_entries() also
iterates over this same list to count nodes.
Quoting from Documentation/filesystems/configfs.rst:
> A subsystem can navigate the cg_children list and the ci_parent pointer
> to see the tree created by the subsystem. This can race with configfs'
> management of the hierarchy, so configfs uses the subsystem mutex to
> protect modifications. Whenever a subsystem wants to navigate the
> hierarchy, it must do so under the protection of the subsystem
> mutex.
Without proper locking, if a userdata item is added or removed
concurrently while these functions are iterating, the list can be
accessed in an inconsistent state. For example, the list_for_each() loop
can reach a node that is being removed from the list by list_del_init()
which sets the nodes' .next pointer to point to itself, so the loop will
never end (or reach the WARN_ON_ONCE in update_userdata() ).
Fix this by holding the configfs subsystem mutex (su_mutex) during all
operations that iterate over cg_children.
This includes:
- userdatum_value_store() which calls update_userdata() to iterate over
cg_children
- All sysdata_*_enabled_store() functions which call
count_extradata_entries() to iterate over cg_children
The su_mutex must be acquired before dynamic_netconsole_mutex to avoid
potential lock ordering issues, as configfs operations may already hold
su_mutex when calling into our code. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: thead: th1520-ap: set all AXI clocks to CLK_IS_CRITICAL
The AXI crossbar of TH1520 has no proper timeout handling, which means
gating AXI clocks can easily lead to bus timeout and thus system hang.
Set all AXI clock gates to CLK_IS_CRITICAL. All these clock gates are
ungated by default on system reset.
In addition, convert all current CLK_IGNORE_UNUSED usage to
CLK_IS_CRITICAL to prevent unwanted clock gating. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/zctx: check chained notif contexts
Send zc only links ubuf_info for requests coming from the same context.
There are some ambiguous syz reports, so let's check the assumption on
notification completion. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix invalid probe error return value
After DME Link Startup, the error return value is set to the MIPI UniPro
GenericErrorCode which can be 0 (SUCCESS) or 1 (FAILURE). Upon failure
during driver probe, the error code 1 is propagated back to the driver
probe function which must return a negative value to indicate an error,
but 1 is not negative, so the probe is considered to be successful even
though it failed. Subsequently, removing the driver results in an oops
because it is not in a valid state.
This happens because none of the callers of ufshcd_init() expect a
non-negative error code.
Fix the return value and documentation to match actual usage. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to detect potential corrupted nid in free_nid_list
As reported, on-disk footer.ino and footer.nid is the same and
out-of-range, let's add sanity check on f2fs_alloc_nid() to detect
any potential corruption in free_nid_list. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: make sure last_fence is always updated
Update last_fence in the vm-bind path instead of kernel managed path.
last_fence is used to wait for work to finish in vm_bind contexts but not
used for kernel managed contexts.
This fixes a bug where last_fence is not waited on context close leading
to faults as resources are freed while in use.
Patchwork: https://patchwork.freedesktop.org/patch/680080/ |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Add RDSEED fix for Zen5
There's an issue with RDSEED's 16-bit and 32-bit register output
variants on Zen5 which return a random value of 0 "at a rate inconsistent
with randomness while incorrectly signaling success (CF=1)". Search the
web for AMD-SB-7055 for more detail.
Add a fix glue which checks microcode revisions.
[ bp: Add microcode revisions checking, rewrite. ] |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Prevents free active kevent
The root cause of this issue are:
1. When probing the usbnet device, executing usbnet_link_change(dev, 0, 0);
put the kevent work in global workqueue. However, the kevent has not yet
been scheduled when the usbnet device is unregistered. Therefore, executing
free_netdev() results in the "free active object (kevent)" error reported
here.
2. Another factor is that when calling usbnet_disconnect()->unregister_netdev(),
if the usbnet device is up, ndo_stop() is executed to cancel the kevent.
However, because the device is not up, ndo_stop() is not executed.
The solution to this problem is to cancel the kevent before executing
free_netdev(). |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: ip22zilog: Use platform device for probing
After commit 84a9582fd203 ("serial: core: Start managing serial controllers
to enable runtime PM") serial drivers need to provide a device in
struct uart_port.dev otherwise an oops happens. To fix this issue
for ip22zilog driver switch driver to a platform driver and setup
the serial device in sgi-ip22 code. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pci: Avoid deadlock between PCI error recovery and mlx5 crdump
Do not block PCI config accesses through pci_cfg_access_lock() when
executing the s390 variant of PCI error recovery: Acquire just
device_lock() instead of pci_dev_lock() as powerpc's EEH and
generig PCI AER processing do.
During error recovery testing a pair of tasks was reported to be hung:
mlx5_core 0000:00:00.1: mlx5_health_try_recover:338:(pid 5553): health recovery flow aborted, PCI reads still not working
INFO: task kmcheck:72 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kmcheck state:D stack:0 pid:72 tgid:72 ppid:2 flags:0x00000000
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<000000065256f572>] schedule_preempt_disabled+0x22/0x30
[<0000000652570a94>] __mutex_lock.constprop.0+0x484/0x8a8
[<000003ff800673a4>] mlx5_unload_one+0x34/0x58 [mlx5_core]
[<000003ff8006745c>] mlx5_pci_err_detected+0x94/0x140 [mlx5_core]
[<0000000652556c5a>] zpci_event_attempt_error_recovery+0xf2/0x398
[<0000000651b9184a>] __zpci_event_error+0x23a/0x2c0
INFO: task kworker/u1664:6:1514 blocked for more than 122 seconds.
Not tainted 5.14.0-570.12.1.bringup7.el9.s390x #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u1664:6 state:D stack:0 pid:1514 tgid:1514 ppid:2 flags:0x00000000
Workqueue: mlx5_health0000:00:00.0 mlx5_fw_fatal_reporter_err_work [mlx5_core]
Call Trace:
[<000000065256f030>] __schedule+0x2a0/0x590
[<000000065256f356>] schedule+0x36/0xe0
[<0000000652172e28>] pci_wait_cfg+0x80/0xe8
[<0000000652172f94>] pci_cfg_access_lock+0x74/0x88
[<000003ff800916b6>] mlx5_vsc_gw_lock+0x36/0x178 [mlx5_core]
[<000003ff80098824>] mlx5_crdump_collect+0x34/0x1c8 [mlx5_core]
[<000003ff80074b62>] mlx5_fw_fatal_reporter_dump+0x6a/0xe8 [mlx5_core]
[<0000000652512242>] devlink_health_do_dump.part.0+0x82/0x168
[<0000000652513212>] devlink_health_report+0x19a/0x230
[<000003ff80075a12>] mlx5_fw_fatal_reporter_err_work+0xba/0x1b0 [mlx5_core]
No kernel log of the exact same error with an upstream kernel is
available - but the very same deadlock situation can be constructed there,
too:
- task: kmcheck
mlx5_unload_one() tries to acquire devlink lock while the PCI error
recovery code has set pdev->block_cfg_access by way of
pci_cfg_access_lock()
- task: kworker
mlx5_crdump_collect() tries to set block_cfg_access through
pci_cfg_access_lock() while devlink_health_report() had acquired
the devlink lock.
A similar deadlock situation can be reproduced by requesting a
crdump with
> devlink health dump show pci/<BDF> reporter fw_fatal
while PCI error recovery is executed on the same <BDF> physical function
by mlx5_core's pci_error_handlers. On s390 this can be injected with
> zpcictl --reset-fw <BDF>
Tests with this patch failed to reproduce that second deadlock situation,
the devlink command is rejected with "kernel answers: Permission denied" -
and we get a kernel log message of:
mlx5_core 1ed0:00:00.1: mlx5_crdump_collect:50:(pid 254382): crdump: failed to lock vsc gw err -5
because the config read of VSC_SEMAPHORE is rejected by the underlying
hardware.
Two prior attempts to address this issue have been discussed and
ultimately rejected [see link], with the primary argument that s390's
implementation of PCI error recovery is imposing restrictions that
neither powerpc's EEH nor PCI AER handling need. Tests show that PCI
error recovery on s390 is running to completion even without blocking
access to PCI config space. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/AER: Fix NULL pointer access by aer_info
The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx
will result in kernel panic. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: leaf: Fix potential infinite loop in command parsers
The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback`
functions contain logic to zero-length commands. These commands are used
to align data to the USB endpoint's wMaxPacketSize boundary.
The driver attempts to skip these placeholders by aligning the buffer
position `pos` to the next packet boundary using `round_up()` function.
However, if zero-length command is found exactly on a packet boundary
(i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up`
function will return the unchanged value of `pos`. This prevents `pos`
to be increased, causing an infinite loop in the parsing logic.
This patch fixes this in the function by using `pos + 1` instead.
This ensures that even if `pos` is on a boundary, the calculation is
based on `pos + 1`, forcing `round_up()` to always return the next
aligned boundary. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_xmit_callback(): fix handling of failed transmitted URBs
The driver lacks the cleanup of failed transfers of URBs. This reduces the
number of available URBs per error by 1. This leads to reduced performance
and ultimately to a complete stop of the transmission.
If the sending of a bulk URB fails do proper cleanup:
- increase netdev stats
- mark the echo_sbk as free
- free the driver's context and do accounting
- wake the send queue |