| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
of: overlay: Call of_changeset_init() early
When of_overlay_fdt_apply() fails, the changeset may be partially
applied, and the caller is still expected to call of_overlay_remove() to
clean up this partial state.
However, of_overlay_apply() calls of_resolve_phandles() before
init_overlay_changeset(). Hence if the overlay fails to apply due to an
unresolved symbol, the overlay_changeset.cset.entries list is still
uninitialized, and cleanup will crash with a NULL-pointer dereference in
overlay_removal_is_ok().
Fix this by moving the call to of_changeset_init() from
init_overlay_changeset() to of_overlay_fdt_apply(), where all other
early initialization is done. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: ocelot: call dsa_tag_8021q_unregister() under rtnl_lock() on driver remove
When the tagging protocol in current use is "ocelot-8021q" and we unbind
the driver, we see this splat:
$ echo '0000:00:00.2' > /sys/bus/pci/drivers/fsl_enetc/unbind
mscc_felix 0000:00:00.5 swp0: left promiscuous mode
sja1105 spi2.0: Link is Down
DSA: tree 1 torn down
mscc_felix 0000:00:00.5 swp2: left promiscuous mode
sja1105 spi2.2: Link is Down
DSA: tree 3 torn down
fsl_enetc 0000:00:00.2 eno2: left promiscuous mode
mscc_felix 0000:00:00.5: Link is Down
------------[ cut here ]------------
RTNL: assertion failed at net/dsa/tag_8021q.c (409)
WARNING: CPU: 1 PID: 329 at net/dsa/tag_8021q.c:409 dsa_tag_8021q_unregister+0x12c/0x1a0
Modules linked in:
CPU: 1 PID: 329 Comm: bash Not tainted 6.5.0-rc3+ #771
pc : dsa_tag_8021q_unregister+0x12c/0x1a0
lr : dsa_tag_8021q_unregister+0x12c/0x1a0
Call trace:
dsa_tag_8021q_unregister+0x12c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
---[ end trace 0000000000000000 ]---
------------[ cut here ]------------
RTNL: assertion failed at net/8021q/vlan_core.c (376)
WARNING: CPU: 1 PID: 329 at net/8021q/vlan_core.c:376 vlan_vid_del+0x1b8/0x1f0
CPU: 1 PID: 329 Comm: bash Tainted: G W 6.5.0-rc3+ #771
pc : vlan_vid_del+0x1b8/0x1f0
lr : vlan_vid_del+0x1b8/0x1f0
dsa_tag_8021q_unregister+0x8c/0x1a0
felix_tag_8021q_teardown+0x130/0x150
felix_teardown+0x3c/0xd8
dsa_tree_teardown_switches+0xbc/0xe0
dsa_unregister_switch+0x168/0x260
felix_pci_remove+0x30/0x60
pci_device_remove+0x4c/0x100
device_release_driver_internal+0x188/0x288
device_links_unbind_consumers+0xfc/0x138
device_release_driver_internal+0xe0/0x288
device_driver_detach+0x24/0x38
unbind_store+0xd8/0x108
drv_attr_store+0x30/0x50
DSA: tree 0 torn down
This was somewhat not so easy to spot, because "ocelot-8021q" is not the
default tagging protocol, and thus, not everyone who tests the unbinding
path may have switched to it beforehand. The default
felix_tag_npi_teardown() does not require rtnl_lock() to be held. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: mediatek: mt8186: Fix use-after-free in driver remove path
When devm runs function in the "remove" path for a device it runs them
in the reverse order. That means that if you have parts of your driver
that aren't using devm or are using "roll your own" devm w/
devm_add_action_or_reset() you need to keep that in mind.
The mt8186 audio driver didn't quite get this right. Specifically, in
mt8186_init_clock() it called mt8186_audsys_clk_register() and then
went on to call a bunch of other devm function. The caller of
mt8186_init_clock() used devm_add_action_or_reset() to call
mt8186_deinit_clock() but, because of the intervening devm functions,
the order was wrong.
Specifically at probe time, the order was:
1. mt8186_audsys_clk_register()
2. afe_priv->clk = devm_kcalloc(...)
3. afe_priv->clk[i] = devm_clk_get(...)
At remove time, the order (which should have been 3, 2, 1) was:
1. mt8186_audsys_clk_unregister()
3. Free all of afe_priv->clk[i]
2. Free afe_priv->clk
The above seemed to be causing a use-after-free. Luckily, it's easy to
fix this by simply using devm more correctly. Let's move the
devm_add_action_or_reset() to the right place. In addition to fixing
the use-after-free, code inspection shows that this fixes a leak
(missing call to mt8186_audsys_clk_unregister()) that would have
happened if any of the syscon_regmap_lookup_by_phandle() calls in
mt8186_init_clock() had failed. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: annotate accesses to nlk->cb_running
Both netlink_recvmsg() and netlink_native_seq_show() read
nlk->cb_running locklessly. Use READ_ONCE() there.
Add corresponding WRITE_ONCE() to netlink_dump() and
__netlink_dump_start()
syzbot reported:
BUG: KCSAN: data-race in __netlink_dump_start / netlink_recvmsg
write to 0xffff88813ea4db59 of 1 bytes by task 28219 on cpu 0:
__netlink_dump_start+0x3af/0x4d0 net/netlink/af_netlink.c:2399
netlink_dump_start include/linux/netlink.h:308 [inline]
rtnetlink_rcv_msg+0x70f/0x8c0 net/core/rtnetlink.c:6130
netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2577
rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6192
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
sock_write_iter+0x1aa/0x230 net/socket.c:1138
call_write_iter include/linux/fs.h:1851 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x463/0x760 fs/read_write.c:584
ksys_write+0xeb/0x1a0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x42/0x50 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff88813ea4db59 of 1 bytes by task 28222 on cpu 1:
netlink_recvmsg+0x3b4/0x730 net/netlink/af_netlink.c:2022
sock_recvmsg_nosec+0x4c/0x80 net/socket.c:1017
____sys_recvmsg+0x2db/0x310 net/socket.c:2718
___sys_recvmsg net/socket.c:2762 [inline]
do_recvmmsg+0x2e5/0x710 net/socket.c:2856
__sys_recvmmsg net/socket.c:2935 [inline]
__do_sys_recvmmsg net/socket.c:2958 [inline]
__se_sys_recvmmsg net/socket.c:2951 [inline]
__x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x00 -> 0x01 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dp: Drop aux devices together with DP controller
Using devres to depopulate the aux bus made sure that upon a probe
deferral the EDP panel device would be destroyed and recreated upon next
attempt.
But the struct device which the devres is tied to is the DPUs
(drm_dev->dev), which may be happen after the DP controller is torn
down.
Indications of this can be seen in the commonly seen EDID-hexdump full
of zeros in the log, or the occasional/rare KASAN fault where the
panel's attempt to read the EDID information causes a use after free on
DP resources.
It's tempting to move the devres to the DP controller's struct device,
but the resources used by the device(s) on the aux bus are explicitly
torn down in the error path. The KASAN-reported use-after-free also
remains, as the DP aux "module" explicitly frees its devres-allocated
memory in this code path.
As such, explicitly depopulate the aux bus in the error path, and in the
component unbind path, to avoid these issues.
Patchwork: https://patchwork.freedesktop.org/patch/542163/ |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5-cache: fix a deadlock in r5l_exit_log()
Commit b13015af94cf ("md/raid5-cache: Clear conf->log after finishing
work") introduce a new problem:
// caller hold reconfig_mutex
r5l_exit_log
flush_work(&log->disable_writeback_work)
r5c_disable_writeback_async
wait_event
/*
* conf->log is not NULL, and mddev_trylock()
* will fail, wait_event() can never pass.
*/
conf->log = NULL
Fix this problem by setting 'config->log' to NULL before wake_up() as it
used to be, so that wait_event() from r5c_disable_writeback_async() can
exist. In the meantime, move forward md_unregister_thread() so that
null-ptr-deref this commit fixed can still be fixed. |
| In the Linux kernel, the following vulnerability has been resolved:
usb-storage: alauda: Fix uninit-value in alauda_check_media()
Syzbot got KMSAN to complain about access to an uninitialized value in
the alauda subdriver of usb-storage:
BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0
drivers/usb/storage/alauda.c:1137
CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x191/0x1f0 lib/dump_stack.c:113
kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108
__msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250
alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460
The problem is that alauda_check_media() doesn't verify that its USB
transfer succeeded before trying to use the received data. What
should happen if the transfer fails isn't entirely clear, but a
reasonably conservative approach is to pretend that no media is
present.
A similar problem exists in a usb_stor_dbg() call in
alauda_get_media_status(). In this case, when an error occurs the
call is redundant, because usb_stor_ctrl_transfer() already will print
a debugging message.
Finally, unrelated to the uninitialized memory access, is the fact
that alauda_check_media() performs DMA to a buffer on the stack.
Fortunately usb-storage provides a general purpose DMA-able buffer for
uses like this. We'll use it instead. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Don't leak a resource on swapout move error
If moving the bo to system for swapout failed, we were leaking
a resource. Fix. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove
The MBHC resources must be released on component probe failure and
removal so can not be tied to the lifetime of the component device.
This is specifically needed to allow probe deferrals of the sound card
which otherwise fails when reprobing the codec component:
snd-sc8280xp sound: ASoC: failed to instantiate card -517
genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr)
wcd938x_codec audio-codec: Failed to request mbhc interrupts -16
wcd938x_codec audio-codec: mbhc initialization failed
wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16
snd-sc8280xp sound: ASoC: failed to instantiate card -16 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: synchronize atomic write aborts
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix skb refcnt race after locking changes
There is a race where skb's from the sk_psock_backlog can be referenced
after userspace side has already skb_consumed() the sk_buff and its refcnt
dropped to zer0 causing use after free.
The flow is the following:
while ((skb = skb_peek(&psock->ingress_skb))
sk_psock_handle_Skb(psock, skb, ..., ingress)
if (!ingress) ...
sk_psock_skb_ingress
sk_psock_skb_ingress_enqueue(skb)
msg->skb = skb
sk_psock_queue_msg(psock, msg)
skb_dequeue(&psock->ingress_skb)
The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is
what the application reads when recvmsg() is called. An application can
read this anytime after the msg is placed on the queue. The recvmsg hook
will also read msg->skb and then after user space reads the msg will call
consume_skb(skb) on it effectively free'ing it.
But, the race is in above where backlog queue still has a reference to
the skb and calls skb_dequeue(). If the skb_dequeue happens after the
user reads and free's the skb we have a use after free.
The !ingress case does not suffer from this problem because it uses
sendmsg_*(sk, msg) which does not pass the sk_buff further down the
stack.
The following splat was observed with 'test_progs -t sockmap_listen':
[ 1022.710250][ T2556] general protection fault, ...
[...]
[ 1022.712830][ T2556] Workqueue: events sk_psock_backlog
[ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80
[ 1022.713653][ T2556] Code: ...
[...]
[ 1022.720699][ T2556] Call Trace:
[ 1022.720984][ T2556] <TASK>
[ 1022.721254][ T2556] ? die_addr+0x32/0x80^M
[ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0
[ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30
[ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80
[ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300
[ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0
[ 1022.723633][ T2556] worker_thread+0x4f/0x3a0
[ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10
[ 1022.724386][ T2556] kthread+0xfd/0x130
[ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725066][ T2556] ret_from_fork+0x2d/0x50
[ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30
[ 1022.726201][ T2556] </TASK>
To fix we add an skb_get() before passing the skb to be enqueued in the
engress queue. This bumps the skb->users refcnt so that consume_skb()
and kfree_skb will not immediately free the sk_buff. With this we can
be sure the skb is still around when we do the dequeue. Then we just
need to decrement the refcnt or free the skb in the backlog case which
we do by calling kfree_skb() on the ingress case as well as the sendmsg
case.
Before locking change from fixes tag we had the sock locked so we
couldn't race with user and there was no issue here. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ina2xx: avoid NULL pointer dereference on OF device match
The affected lines were resulting in a NULL pointer dereference on our
platform because the device tree contained the following list of
compatible strings:
power-sensor@40 {
compatible = "ti,ina232", "ti,ina231";
...
};
Since the driver doesn't declare a compatible string "ti,ina232", the OF
matching succeeds on "ti,ina231". But the I2C device ID info is
populated via the first compatible string, cf. modalias population in
of_i2c_get_board_info(). Since there is no "ina232" entry in the legacy
I2C device ID table either, the struct i2c_device_id *id pointer in the
probe function is NULL.
Fix this by using the already populated type variable instead, which
points to the proper driver data. Since the name is also wanted, add a
generic one to the ina2xx_config table. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: Fix NULL ptr deref by checking new_crtc_state
intel_atomic_get_new_crtc_state can return NULL, unless crtc state wasn't
obtained previously with intel_atomic_get_crtc_state, so we must check it
for NULLness here, just as in many other places, where we can't guarantee
that intel_atomic_get_crtc_state was called.
We are currently getting NULL ptr deref because of that, so this fix was
confirmed to help.
(cherry picked from commit 1d5b09f8daf859247a1ea65b0d732a24d88980d8) |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix null-ptr-deref in raid10_sync_request
init_resync() inits mempool and sets conf->have_replacemnt at the beginning
of sync, close_sync() frees the mempool when sync is completed.
After [1] recovery might be skipped and init_resync() is called but
close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio.
The following is one way to reproduce the issue.
1) create a array, wait for resync to complete, mddev->recovery_cp is set
to MaxSector.
2) recovery is woken and it is skipped. conf->have_replacement is set to
0 in init_resync(). close_sync() not called.
3) some io errors and rdev A is set to WantReplacement.
4) a new device is added and set to A's replacement.
5) recovery is woken, A have replacement, but conf->have_replacemnt is
0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref
occurs.
Fix it by not calling init_resync() if recovery skipped.
[1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled") |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: think-lmi: Fix memory leak when showing current settings
When retriving a item string with tlmi_setting(), the result has to be
freed using kfree(). In current_value_show() however, malformed
item strings are not freed, causing a memory leak.
Fix this by eliminating the early return responsible for this. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: flush inode if atomic file is aborted
Let's flush the inode being aborted atomic operation to avoid stale dirty
inode during eviction in this call stack:
f2fs_mark_inode_dirty_sync+0x22/0x40 [f2fs]
f2fs_abort_atomic_write+0xc4/0xf0 [f2fs]
f2fs_evict_inode+0x3f/0x690 [f2fs]
? sugov_start+0x140/0x140
evict+0xc3/0x1c0
evict_inodes+0x17b/0x210
generic_shutdown_super+0x32/0x120
kill_block_super+0x21/0x50
deactivate_locked_super+0x31/0x90
cleanup_mnt+0x100/0x160
task_work_run+0x59/0x90
do_exit+0x33b/0xa50
do_group_exit+0x2d/0x80
__x64_sys_exit_group+0x14/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
This triggers f2fs_bug_on() in f2fs_evict_inode:
f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
This fixes the syzbot report:
loop0: detected capacity change from 0 to 131072
F2FS-fs (loop0): invalid crc value
F2FS-fs (loop0): Found nat_bits in checkpoint
F2FS-fs (loop0): Mounted with checkpoint version = 48b305e4
------------[ cut here ]------------
kernel BUG at fs/f2fs/inode.c:869!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 5014 Comm: syz-executor220 Not tainted 6.4.0-syzkaller-11479-g6cd06ab12d1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
RIP: 0010:f2fs_evict_inode+0x172d/0x1e00 fs/f2fs/inode.c:869
Code: ff df 48 c1 ea 03 80 3c 02 00 0f 85 6a 06 00 00 8b 75 40 ba 01 00 00 00 4c 89 e7 e8 6d ce 06 00 e9 aa fc ff ff e8 63 22 e2 fd <0f> 0b e8 5c 22 e2 fd 48 c7 c0 a8 3a 18 8d 48 ba 00 00 00 00 00 fc
RSP: 0018:ffffc90003a6fa00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: ffff8880273b8000 RSI: ffffffff83a2bd0d RDI: 0000000000000007
RBP: ffff888077db91b0 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff888029a3c000
R13: ffff888077db9660 R14: ffff888029a3c0b8 R15: ffff888077db9c50
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1909bb9000 CR3: 00000000276a9000 CR4: 0000000000350ef0
Call Trace:
<TASK>
evict+0x2ed/0x6b0 fs/inode.c:665
dispose_list+0x117/0x1e0 fs/inode.c:698
evict_inodes+0x345/0x440 fs/inode.c:748
generic_shutdown_super+0xaf/0x480 fs/super.c:478
kill_block_super+0x64/0xb0 fs/super.c:1417
kill_f2fs_super+0x2af/0x3c0 fs/f2fs/super.c:4704
deactivate_locked_super+0x98/0x160 fs/super.c:330
deactivate_super+0xb1/0xd0 fs/super.c:361
cleanup_mnt+0x2ae/0x3d0 fs/namespace.c:1254
task_work_run+0x16f/0x270 kernel/task_work.c:179
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0xa9a/0x29a0 kernel/exit.c:874
do_group_exit+0xd4/0x2a0 kernel/exit.c:1024
__do_sys_exit_group kernel/exit.c:1035 [inline]
__se_sys_exit_group kernel/exit.c:1033 [inline]
__x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1033
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f309be71a09
Code: Unable to access opcode bytes at 0x7f309be719df.
RSP: 002b:00007fff171df518 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00007f309bef7330 RCX: 00007f309be71a09
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 00007f309bef1e40
R10: 0000000000010600 R11: 0000000000000246 R12: 00007f309bef7330
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:f2fs_evict_inode+0x172d/0x1e00 fs/f2fs/inode.c:869
Code: ff df 48 c1 ea 03 80 3c 02 00 0f 85 6a 06 00 00 8b 75 40 ba 01 00 00 00 4c 89 e7 e8 6d ce 06 00 e9 aa fc ff ff e8 63 22 e2 fd <0f> 0b e8 5c 22 e2 fd 48 c7 c0 a8 3a 18 8d 48 ba 00 00 00 00 00 fc
RSP: 0018:ffffc90003a6fa00 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_add_adv_monitor()
KSAN reports use-after-free in hci_add_adv_monitor().
While adding an adv monitor,
hci_add_adv_monitor() calls ->
msft_add_monitor_pattern() calls ->
msft_add_monitor_sync() calls ->
msft_le_monitor_advertisement_cb() calls in an error case ->
hci_free_adv_monitor() which frees the *moniter.
This is referenced by bt_dev_dbg() in hci_add_adv_monitor().
Fix the bt_dev_dbg() by using handle instead of monitor->handle. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free in l2cap_disconnect_{req,rsp}
Similar to commit d0be8347c623 ("Bluetooth: L2CAP: Fix use-after-free
caused by l2cap_chan_put"), just use l2cap_chan_hold_unless_zero to
prevent referencing a channel that is about to be destroyed. |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show()
Wear-leveling entry could be freed in error path, which may be accessed
again in eraseblk_count_seq_show(), for example:
__erase_worker eraseblk_count_seq_show
wl = ubi->lookuptbl[*block_number]
if (wl)
wl_entry_destroy
ubi->lookuptbl[e->pnum] = NULL
kmem_cache_free(ubi_wl_entry_slab, e)
erase_count = wl->ec // UAF!
Wear-leveling entry updating/accessing in ubi->lookuptbl should be
protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize
wl entry accessing between wl_entry_destroy() and
eraseblk_count_seq_show().
Fetch a reproducer in [Link]. |